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Abstract. In this paper, we study a reversible process (more precisely,
a groupoid/group action) resembling the classical 15-puzzle, where the
legal moves are to “move the unique hole inside a translate of a shape
S”. Such a process can be defined for any finite subset S of a group, and
we refer to such a process as simply “solitaire”. We develop a general
theory of solitaire, and then concentrate on the simplest possible exam-
ple, solitaire for the plane Z2, and S the triange shape (equivalently, any
three-element set in general position). In this case, we give a polynomial
time algorithm that puts any finite subset of the plane in normal form
using solitaire moves, and show that the solitaire orbit of a line of con-
secutive ones – the line orbit – is completely characterised by the notion
of a so-called fill matrix. We show that the diameter of the line orbit, as
a graph with edges the solitaire moves, is cubic. We show that analogous
results hold for the square shape, but indicate some shapes (still on the
group Z2) where this is less immediate.

Keywords: solitaire of independence · TEP subshift · subshift of finite
type · bipermutive cellular automata

1 Introduction

In this paper, we introduce the solitaire of independence, which is a game played
on subsets of a group, alternatively an abstract rewriting system, groupoid or
group action. Specifically, if G is a discrete group, and S ⋐ G is finite, then
on subsets of G we can play a variant of the classical “15-puzzle” by, for each
g ∈ G, allowing a move from x ⊂ G to y ⊂ G if the difference between x and y
is precisely that they lack a different element of gS (but both intersect gS in a
set of size |S| − 1). Or in words, we are allowed to move a unique hole in any set
gS.

For example, ifG = Z2, and we consider the triangle shape T = {(0, 1), (0, 0), (1, 0)},
then the action consists in arbitrarily permuting the three patterns depicted in
Figure 1 at some coordinates where one of them appears in the pattern.

A simple illustration of a valid sequence of moves for this shape on subsets
of the set {(a, b) | a, b ⩾ 0, a+ b ⩽ 3} ⊂ Z2 is shown in Figure 2.

On the website [6], one can play the solitaire on Z2 with any small shape.
In the present paper, we develop a basic theory of solitaire processes, and

illustrate it with a detailed look at the triangle shape, for which we can give a
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Fig. 1: The action of the triangle shape. Grey denotes 1, white denotes 0.

Fig. 2: A simple sequence of valid moves of triangle solitaire starting from the
line L4 = {(a, b) | a, b ⩾ 0, a+ b ⩽ 3}.

full description of the family of sets reachable from a given set by playing the
solitaire. In particular, for this example our main theorem is the following:

Theorem 1. For the triangle solitaire process, for any finite set P ⋐ Z2, there
is a sequence of solitaire moves with cubic length in |P | which puts P in normal
form, and such a sequence can be found in polynomial time.

By normal form, we mean that we can find a canonical representative of
the orbit, such that we can compare orbits by comparing the representatives.
The normal form we use is a disjoint (and “non-touching”) union of lines with
additional elements lined up on top.

We have implemented a variant of this algorithm (with a different idea but
the same asymptotic complexity), and it is available in [9].

The general theory of solitaire is tightly connected with another process
called the filling process described in Section 3.2, which is a simpler (confluent)
process where we inductively construct the largest set that could possibly be
involved in the solitaire game, by filling in the missing holes in sets gS (i.e. if
|gS ∩ P | = |S| − 1, then gS may be added to P ).

Due to confluence, the filling process gives rise to a closure operator, and our
primary interest is in understanding the connection between patterns that fill a
particular set, and orbits in the solitaire process. Of specific interest is the case
where in fact all sets that are minimal in cardinality, and fill a given set, are in
the same solitaire orbit. We refer to this case as a nice solitaire theory. We do
not know, at present, general conditions under which solitaire processes are nice.
However, we obtain that the triangle shape, as well as the square shape {0, 1}2,
have nice solitaire theories on the group Z2.

We also explain the connection with TEP subshifts from [7], which are a
generalization of spacetime subshifts of bipermutive cellular automata, and more
generally permutive subshifts (which also generalize the polygonal subshifts of
[2]). In particular, to any subshift we associate its “independent sets” and the sets
“spanning” the contents of a given area (which are analogs of notions from linear
algebra and matroid theory with the same names). We show that the solitaire
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process preserves these sets in the case of TEP and permutive subshifts. (The
fact it acts on the independent sets gives the process its full name “solitaire of
independence”.)

The present paper is an extended version of the conference paper [10] where
we presented the results about the triangle shape in isolation. The result here
about the diameter of orbits is slightly sharper.

2 Conventions and basic definitions

For the most part, we give definitions as we go, but we list some general con-
ventions here, and also collect some definitions that are used throughout.

We have 0 ∈ N. An alphabet is just a finite set A whose elements are called
letters or symbols. Groups G are always countable (and discrete), with the main
interest being in finitely-generated groups. By ⊂ we mean ⊆.

For a function f : A → B and C ⊂ A, write f |C for the restriction of f to
C. For functions that are thought of as “patterns” (see below), we also write fc
for f(c). If F is a family of functions (or patterns), then F |A = {f |A | f ∈ F}.

We use some conventions from formal language theory and combinatorics
on words, in particular if A is a finite alphabet, A∗ denotes the words on the
alphabet (or elements of the free monoid), and concatenation of u, v ∈ A∗ is
written simply as uv.

We use standard big-O notation: for f, g : N → N, we have g ∈ O(f) or “g
is O(f)” (resp. Ω(f)) if g(n) ⩽ Mf(n) (resp. ⩾) for large n and a constant M .
We have Θ(f) = O(f) ∩Ω(f).

If X is a set, closure operator is a map τ : P(X) → P(X) which is extensive
meaning ∀A ⊂ X : A ⊂ τ(A), monotone meaning ∀A,B ⊂ X : A ⊂ B =⇒
τ(A) ⊂ τ(B), and idempotent meaning ∀A ⊂ X : τ(τ(A)) = τ(A).

The fixed points or closed sets of a closure operator form a closure system,
i.e. X is closed and an arbitrary intersection of closed sets is closed.

A set of sets S ⊂ P(X) is a down set if A ∈ S and B ⊂ A imply B ∈ S. Up
sets are defined symmetrically.

The support of a permutation is the set of elements that it moves. Note that
this set is closed under the permutation.

If A is an alphabet, G a group a pattern is p : P → A with P ⊂ G (not
necessarily finite). When playing the solitaire, we also talk about patterns as
subsets of G (subsets are of course in bijection with patterns over the alphabet
A = {0, 1}). If a ∈ A and g ∈ G, write ag for the unique pattern p of type
p : {g} → {a},

3 The general theory of solitaire

3.1 Solitaire moves

We begin by defining the solitaire process on a group. We give a slightly more
general definition than was discussed in the introduction, where the unique hole
can only be moved if it is one of the elements in a particular subset C ⋐ S.
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While our main interest is indeed in the case C = S, cases C ⊊ S also arise
naturally in applications (see [7] and Section 8.5) and do not add any difficulties
in proofs.

Definition 1. Let G be a discrete countable group. If C ⋐ S ⋐ G are finite sets,
then a (C, S)-solitaire move at g ∈ G is a pair (x, y) ∈ P(G)2 such that

|x ∩ gS| = |y ∩ gS| = |S| − 1 ∧ x△y ∈ P2(gC).

In general, a (C, S)-solitaire move is a (C, S)-solitaire move at any g ∈ G,
and (S, S)-solitaire moves are called simply S-solitaire moves. A (C, S)-solitaire
move (x, y) is usually written as x →C,S y or even x → y, and x →∗ y denotes
the transitive closure of this relation.

Note that despite the arrow being directed, the moves are invertible. One can
think of the (C, S)-solitaire moves in many ways. Of course, one can think of
them as a relation, or as forming the edges of an undirected graph with vertices
P(G), or as the objects of an abstract rewriting system (with the edges giving
the legal rewrite rules).

Slightly less obviously, but usefully, one can think of them as a group action:
for each g ∈ G, we have an action of the group of permutations on C, which
permutes the hole in gC, in configurations x ∈ P(G) with |x ∩ gS| = |S| − 1 ∧
|x ∩ gC| = |C| − 1 (and fixes all other configurations). The free product of the
groups Pc then acts on P(G), and this action is by homeomorphisms when P(G)
is given the product topology.

Another, useful way is to think of them as a groupoid. Recall that a groupoid
is a small category (meaning the objects form a set) where every morphism is an
isomorphism. Every equivalence relation can be thought of as a groupoid, where
the objects are the elements of the set, and morphisms are equivalent pairs. Such
a groupoid is principal, meaning there is at most one (iso)morphism between any
pair of objects.

The advantage of the groupoid point of view over the group action point of
view is that the action of a certain sequence of elements now always applies the
same permutation – it may simply not be applicable. This point of view is crucial
in the proof of Lemma 14 (which was in fact one of the reasons that prompted
us to develop this theory properly).

We note that a groupoid structure is a standard way to think about the
classical 15-puzzle, which corresponds roughly to the case G = Z2, C = S =
{0, 1}2 of the solitaire (and which we study in Section 6.1).

Due to the group action and groupoid interpretation, it is natural to call
equivalence classes of the relation →∗ orbits. We denote the orbit of x ∈ P(G)
as O(x). We say a set X ⊂ Y is closed under solitaire if ∀x ∈ X : ∀y ∈ Y : x→∗

y =⇒ y ∈ X.

Remark 1. We note that the theory of solitaire might as well be built on finitely-
generated groups. Namely, let H = ⟨S−1S⟩, i.e. the subgroup of G generated by
all a−1b such that a, b ∈ S. Then it is easy to see that each solitaire move
only touches elements in a single coset. Thus, the cosets behave completely
independently.
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3.2 Filling process

Definition 2. Let G be a discrete countable group. If C ⋐ S ⋐ G are finite sets,
then a (C, S)-filling move at g ∈ G is a pair (x, y) ∈ P(G)2 such that

x ̸= y ∧ |x ∩ gS| = |S| − 1 ∧ y = x ∪ gC.

In general, a (C, S)-filling move is a (C, S)-filling move at any g ∈ G, and
(S, S)-filling moves are called simply S-filling moves. A (C, S)-filling move (x, y)
is usually written as x⇒C,S y or even x⇒ y, and x⇒∗ y denotes the transitive
closure of this relation.

Note that the filling process is not reversible, however:

Lemma 1. The filling process has the diamond property, meaning whenever
x ⇒ y, x ⇒ z with y ̸= z, there exists w such that y ⇒ w, z ⇒ w. In particular,
the system is confluent, meaning whenever x⇒∗ y, x⇒∗ z, there exists w such
that y ⇒∗ w, z ⇒∗ w.

Proof. Suppose x ⇒ y, x ⇒ z with y ̸= z. Then x ̸= y, x ̸= z and there exist
g ∈ G such that

|x ∩ gS| = |S| − 1 ∧ y = x ∪ gC

and g′ ∈ G such that

|x ∩ g′S| = |S| − 1 ∧ z = x ∪ g′C.

Take w = y∪z. Observe that if y∩g′S = g′S, then y ⊃ z so in fact y = w = z
(which we assumed does not hold). Thus we must have |y ∩ g′S| = |x ∩ g′S| =
|S| − 1 and thus y ⇒ y ∪ g′C = x ∪ gC ∪ g′C = w as desired. Symmetrically,
z ⇒ w.

The fact confluence follows from the diamond property is well-known, and
follows from completing the paths x ⇒m y, x ⇒n z to an m-by-n rectangle, by
successive applications of the diamond property. ⊓⊔

Definition 3. Let G be a discrete countable group. If C ⋐ S ⋐ G are finite sets,
then the (C, S)-filling closure of x ∈ P(G) is defined as

φC,S(x) =
⋃

{y | x⇒∗
C,S y}.

Remark 2. Recall that a directed set is a set together with a partial order such
that any two elements have a common upper bound. The previous lemma shows
that for x ⊂ G, the set Fx = {y ⊂ G | x⇒∗

C,S y} is a directed set under ⇒∗ and
thus under inclusion, since the filling process can only increase sets. The set Fx

defined above is precisely the limit of this set (seen as a net indexed by itself)
in the product topology of P(G). (For the definition of a limit of a net see any
standard reference [4].)

Lemma 2. The (C, S)-filling closure operator φ is a closure operator.



6 V. Salo, J. Schabanel

Proof. By definition, we need to show x ⊂ φ(x) (extensivity), x ⊂ y =⇒ φ(x) ⊂
φ(y) (monotonicity) and φ(φ(x)) = φ(x) (idempotency) for all sets x, y. But in
fact, all of these properties are obvious. ⊓⊔

It follows from the previous lemma that the set of sets x ∈ P(G) which are
their own filling closure form a closure system, and we call the fixed points filling
closed sets. In particular, the following is a well-known consequence:

Lemma 3. The filling closure φ(x) is the intersection of all filling closed sets
that contain x.

The connection between the solitaire and the filling process is now the fol-
lowing:

Lemma 4. Let G be a discrete countable group, and let C ⋐ S ⋐ G be finite sets.
Let x ∈ P(G) be arbitrary. Then for all y ∈ O(x), we have φC,S(y) = φC,S(x).

Proof. It suffices to show that if x ∈ P(G) and x→C,S y, then y ⊂ φ(x). Namely
then by idempotency φ(y) ⊂ φ(x) as well.

Suppose thus x→C,S y, meaning

|x ∩ gS| = |y ∩ gS| = |S| − 1 ∧ x△y ∈ P2(gC).

It suffices to show that x⇒ x ∪ y by a move at g, i.e.

|x ∩ gS| = |S| − 1 ∧ x ∪ y = x ∪ gC,

because then y ⊂ x ∪ y ⊂ φ(t). Of course |x ∩ gS| = |S| − 1 is immediate. We
have x ∪ gC = x ∪ y because the only difference between x and y is that they
lack a different element of gC. ⊓⊔

We note a useful property of the filling operator (which is a general property
of closure operators).

Lemma 5. Suppose φ(x) = φ(y). Then φ(x ∪ z) = φ(y ∪ z) for any z.

Proof.
φ(x ∪ z) = φ(φ(x ∪ z)) ⊃ φ(y ∪ z)

since z ⊂ x ∪ z ⊂ φ(x ∪ z) and y ⊂ φ(x) ⊂ φ(x ∪ z). ⊓⊔

3.3 Linear sets, finite fillings and finite solitaires

Our interest is specifically on the solitaire orbits of finite sets. For the following
definitions, we concentrate on the case C = S.

Definition 4. Let G be a group. A subset S ⋐ G is linear if there exists a, b, c ∈
G with b of infinite order, such that S ⊂ a⟨b⟩c where ⟨b⟩ = {bn | n ∈ Z}.
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Note that ⟨b⟩ is the (cyclic) group generated by the element b, and b being of
infinite order means precisely that this group is infinite. Recall that a left coset
of a subgroup H ⩽ G is a set of the form aH.

Lemma 6. If S is a linear shape, then there exists a shape S′ which is contained
in a cyclic group, such that the set of S-solitaire moves coincides with the set of
S′-solitaire moves.

Proof. We have
S ⊂ a⟨b⟩c = ac⟨c−1bc⟩.

Then S′ = (ac)−1S ⊂ ⟨c−1bc⟩. Clearly S′-solitaire moves are equivalent to S-
solitaire moves, as the set of moves only depends on the set of left translates of
the shape. ⊓⊔

Definition 5. Let G be a group and S ⋐ G. We say G has the finite S-filling
property if the S-filling closure of every finite set is finite. We say G has the
finite filling property if this holds for all non-linear S ⋐ G. We say G has the
finite S-solitaire property if the S-solitaire orbit of every finite set is finite, and
finite solitaire property if this holds for all non-linear S.

The assumption of non-linearity is necessary:

Lemma 7. If S ⋐ G is linear, and |S| ⩾ 2, then there is a finite set with infinite
S-filling closure and infinite S-solitaire orbit.

Proof. By Lemma 6 above we may suppose S ⊂ ⟨b⟩ with b of infinite order. Letm
be maximal and n ⩾ m minimal such that S ⊂ T = {bm, . . . , bn}. Then T \{bm}
is easily seen to have infinite S-filling orbit and infinite S-solitaire orbit. ⊓⊔

The following is immediate from Lemma 4.

Lemma 8. If G has the finite filling property, then it has the finite solitaire
property.

The following is a simple geometric observation.

Proposition 1. The groups Zd have the finite filling property. In particular, it
has the finite solitaire property.

Proof. The case d = 1 is trivial (and rather meaningless).
Suppose S ⋐ Zd is non-linear. We start by showing that we may assume 0⃗ is

in the interior of the convex hull C of S. First, we may temporarily assume by
translating that 0⃗ ∈ S. We may then assume that S generates Zd (not necessarily
positively), by possibly replacing Zd by the group generated by S. Note that still
d ⩾ 2 by the assumption that S is non-linear.

Because S generates Zd, C has nonempty interior, as it is well-known that
a convex set without interior lies in a proper affine set (and thus we could’ve
taken a smaller d). Now replace S by kS for large k ∈ N (i.e. dilate the shape;
note that this preserves the finite filling property because kS-solitaire consists of
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independent S-solitaires on cosets of kZd, see also Remark 1), and then translate
it, after which we may actually assume that 0⃗ ∈ C◦ in the first place place (after
this, we may no longer have 0⃗ ∈ S).

By basic convex geometry, such a set is a bounded intersection of a finite
number of closed half-spaces, i.e. C =

⋂
i ℓi((−∞, ri]) where ℓi : Rd → R are

linear and nontrivial. Note that ri > 0 since 0⃗ is in the interior of C. Furthermore,
the half-spaces ℓi((−∞, ri]) can be taken to satisfy that each ℓ−1(ri) ∩ C is a
face (i.e. a set spanned by vertices) of C of dimension d− 1.

In particular, the faces are spanned by d vertices of C, which must be elements
of S, thus, |ℓ−1

i (ri) ∩ S| ⩾ d ⩾ 2 for all i. In particular, it follows that H =
ℓ−1
i ((−∞, r]) is closed under S-filling for all r ∈ R. Namely, we have φ(S) ⊂
(−∞, ri] and φ(s) = ri for at least two distinct s ∈ S. Thus the intersection
v⃗ + S ∩ H is always of cardinality |S| (when r < ri) or of cardinality at most
|S| − 2 (when r > ri), and thus Definition 2 does not apply for any v⃗ ∈ Zd.

Now let T ⋐ Zd be arbitrary. Since T is finite, it is bounded and thus ℓ(T )
is bounded for any ℓ ∈ L. Thus, T ⊂ D =

⋂
i ℓi((−∞, ti]). As we showed, each

ℓi((−∞, ti]) is closed under S-filling, thus so is their intersection.
It suffices to show that D is bounded. If it is not, then there exist arbitrarily

large (in norm) v⃗ such that ℓi(v⃗) ⩽ ti for all i. By scaling, we obtain that there
exist arbitrarily large v⃗ such that ℓi(v⃗) ⩽ ri for all i. Such vectors v⃗ are then in
C, so in fact S itself is unbounded, a contradiction. ⊓⊔

4 Excess

Much of our interest is in understanding the connection between the filling pro-
cess and the solitaire process. We measure the difference between a pattern and
a minimal pattern with the same filling closure by the notions of excess and
excess sets.

In the case of the triangle, we will see that for each filling closed set, all
patterns with minimal cardinality that generate it lie in the same solitaire orbit.

4.1 Excess in a global sense

Fix C ⋐ S ⋐ G for this section, and suppose G has finite S-fillings.
If P ⋐ G, then the rank rank(P ) of P is the minimal cardinality of R ⋐ G

such that φ(R) = φ(P ). Note that the rank of P is at most |P |. Note also that
the only candidate subsets R ⋐ G we need to consider are subsets of φ(P ).

Definition 6. The excess of P ⋐ G is defined as e(P ) = |P | − rank(P ).

This is excess in a global sense, since we are counting how much smaller we
could make P by replacing it by another (possible quite different-looking) set,
without changing its filling closure.

Note that every filling closed set F has by definition at least one subset with
numerical excess 0.
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Lemma 9. Excess is monotone: if P ⊂ Q ⋐ G, then e(P ) ⩽ e(Q).

Proof. Let R be a set of size rank(P ) with filling φ(P ). Then φ(Q) = φ(P ∪ (Q\
P )) = φ(R ∪ (Q \ P )) by Lemma 5. Thus rank(Q) ⩽ rank(P ) + |Q \ P | so

e(Q) = |Q| − rank(Q) ⩾ |P |+ |Q \ P | − rank(P )− |Q \ P | = e(P ).

⊓⊔

4.2 Excess in a local sense

Definition 7. Let P ⋐ G. We say Q ⊂ P is an excess set if φ(P \Q) = φ(P ).
The set of excess sets of P is denoted E(P ). The visible excess of P is the
maximal cardinality of an excess set in P , denoted Ê(P ). The phantom excess
of P is e(P )− Ê(P ).

Note that excess sets are defined for a given set P (and of course they depend
on the choice of C, S). Clearly if P contains an excess set of cardinality k, then
the e(P ) ⩾ k. Thus, excess is always at least as large as visible excess, and
phantom excess is always nonnegative.

It is tempting to try to prove that phantom excess is always zero, or even that
all maximal excess sets have the same cardinality, which equals excess. As we
will see in Section 4, this fails badly even on the group Z2, and for the simplest
possible non-linear shape.

Lemma 10. The excess sets of P form a down set.

Proof. IfQ is an excess set of P andQ′ ⊂ Q, then φ(P ) = φ(P \Q) ⊂ φ(P \Q′) ⊂
φ(P ). ⊓⊔

Lemma 11. Visible excess is monotone: if P ⊂ Q ⋐ G, then Ê(P ) ⩽ Ê(Q).

Proof. If R ⊂ P is an excess set then φ(P ) = φ(P \R), so

φ(Q) = φ(P ∪ (Q \ P )) = φ((P \R) ∪ (Q \ P )) = φ(Q \R)

so R is an excess set for Q, implying Ê(Q) ⩾ Ê(P ). ⊓⊔

Lemma 12. If a pattern contains a subpattern with no excess and with the same
filling closure, then it has no phantom excess.

Proof. If P ⊂ Q where P has no excess and φ(P ) = φ(Q), then P can be used
to calculate excess for Q, and we have e(Q) = |Q \P |. On the other hand, Q \P
is clearly an excess set of this cardinality, thus visible excess matches excess. ⊓⊔

Interestingly, visible excess is not preserved under the solitaire process. We
will see an example in Section 5.4.
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4.3 Monotonicity of solitaire, and “elements are not there”

Fix C ⋐ S ⋐ G for this section.
We show that the solitaire process is monotone in the sense that after adding

elements to a set, we can still apply all moves we could previously. Intuitively, we
can always pretend not to see some of the elements in a pattern, and play solitaire
on the subpattern. The elements we pretended not to see are then permuted in
some (possibly nontrivial) way.

Recall that we may think of a solitaire move as applying a permutation of C
in gC (through the natural identification c ↔ gc), and we are allowed to apply
this permutation to a pattern P if g(S \C) ⊂ P and |gC ∩P | = |C|−1. We note
that it does not hurt if we also allow applying the permutation when gS ⊂ P ,
as in this case the permutation fixes the pattern anyway.

Definition 8. We say that solitaire applies at g to pattern P if g(S \ C) ⊂ P
and |gC ∩ P | ⩾ |C| − 1. Then for any permutation π : C → C we have the
associated solitaire move gπ defined by

P → P ′ = (P \ gC) ∪ gπ(g−1P ∩ C).

We also use function notation gπ(P ) = P ′.

Note that g−1P∩C is in bijection with P∩gC, and this bijection is the natural
one, c↔ gc. Thus we are indeed applying π to the subset of P intersecting gC,
and finally moving it back to a subset of gC.

Lemma 13. Let P ⊂ G. If solitaire applies at g to pattern P , then it applies to
any P ∪R. Furthermore, gπ(P ∪R) ⊃ gπ(P ).

Proof. Permutations at g stay applicable when the set increases: the only possible
change in the intersection with gS is that (P ∪ R) ∩ gS becomes gS (because
already P ∩ gS misses at most one element). Both gπ(P ∪ R) and gπ(P ) are
produced by applying the same permutation in the same set of cells. ⊓⊔
Lemma 14. Suppose P →∗ P ′. Then there exists a bijection π : G\P → G\P ′

with support contained in φ(P ), such that P ∪Q→∗ P ′∪π(Q) for all Q ⊂ G\P .

Proof. Since P →∗ P ′, there is a sequence of patterns P = P0 → P1 → · · · →
Pm = P ′, thus there is a sequence of permutations g1, g2, . . . , gm and a sequence
of permutations π1, . . . , πm of C such that solitaire applies at gi in Pi−1, and
Pi = giπi(Pi−1).

Let R ∩ P = ∅, and define Q = Q0 = P ∪ R. Induction and the previous
lemma show that the sequence Qi = giπi(Qi−1) is well-defined (because solitaire
applies at gi to pattern Qi−1), and Qi contains Pi.

The entire evolution of the pattern comes from a sequence of permutations
applied to G, proving the claim about there existing of a single permutation of
π.

For the claim about the support, observe that each Pi is contained in the
filling closure φ(P ). The only way solitaire could apply at gi in Pi−1, without
giS being contained in φ(P ), is that actually giπi moves an element outside of
φ(P ), which is impossible. ⊓⊔



Solitaire of Independence 11

In particular:

Lemma 15. Suppose P →∗ P ′. Then for any Q, we have P ∪Q→∗ R for some
pattern R containing P ′.

Proof. Take R = P ′ ∪ π(Q) in the previous lemma. ⊓⊔

4.4 Transporting excess

Fix again C ⋐ S ⋐ G for solitaire purposes.
Sometimes a filling closed set F contains a filling subset P (i.e. F = φ(P )),

which allows us to freely perform transformations on the excess sets. Intuitively,
P can be moved around F by the solitaire freely enough that it can “drag other
elements along” anywhere in F , and ultimately permute them arbitrarily.

Definition 9. Suppose P,R ⋐ G. The R-restricted orbit of P is the set of
patterns Q ⋐ G obtained from P by applying only solitaire moves only at g inG
such that gS ⊂ R.

Definition 10. Suppose P ⋐ G and F = φ(P ). We say P transports k-excess
inside R if all of the patterns P ⊔ Q ⊂ R where |Q| ⩽ k are in the same R-
restricted S-orbit. We say P transports k-excess if it transports k-excess inside
F . We say P transports excess (inside R) if it transports k-excess (inside R) for
all k.

A super-P pattern is Q ⊃ P such that φ(Q) = φ(P ). In terms of this notion,
P transports k-excess if and only if every for every ℓ ≤ |P | + k, every super-P
pattern with cardinality ℓ is in the same orbit, and transports excess if and only
if every super-P pattern with the same cardinality is in the same orbit. Note that
in this definition P itself is allowed to have excess, although in our applications
it will not. To explain the terminology, it is the excess on top of the excess of P
itself that its transported.

By definition, if P transports k-excess inside F , then it transports (k − 1)-
excess. We show that in at least very special situations, the converse is true.

Lemma 16. Suppose P ⋐ G and F = φ(P ). Suppose F \P = {p1, . . . , pn} and
P transports 1-excess in Rk = P ∪ {p1, . . . , pk} for all k. Then P transports
excess.

Proof. By induction on k and n, we show that P transports n-excess in Rk for
all k, n. For k = 0, this is trivial, and for a fixed k, it is trivially true for n = 0,
since in these cases P is the only pattern to consider.

Consider then a pattern Q of size n+ 1 inside Rk, such that the claim holds
for patterns up to size n, and holds for all smaller values of k. If n + 1 = k,
then Q is the only pattern of its size, and the claim holds trivially, so suppose
n + 1 < k. If Q does not contain pk, we may think of it as being contained in
Rk−1, inside which we can transport (n + 1)-excess freely. Thus, it suffices to
show that pk can be moved inside Rk−1 without involving elements outside Rk.
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Actually, it is easier to show that we can move an element into pk. Namely,
since n+ 1 ⩾ 1, we know that Q contains some pi. Since P transports 1-excess,
we have P ∪ {pi} →∗ P ∪ {pn}.

By Lemma 15, we then have P ∪ Q →∗ P ∪ R for some R ∋ pk. In fact, by
Lemma 14, we can choose R \ {pk} freely by choosing Q freely, and the latter is
possible since P transports (n+ 1)-excess inside Rk−1. ⊓⊔

Lemma 17. The solitaire preserves the set of patterns that transport excess.

Proof. Suppose P transports excess, and suppose Q →∗ P . Let Q ⊂ R ⊔ Q ⊂
φ(Q). By Lemma 15, we have Q ∪R →∗ P ′ for some pattern PR containing P .
Since P transports excess, all such PR with equal cardinality are in the same
orbit, therefore all patterns Q ∪ R with the same cardinality are in the same
orbit. ⊓⊔

4.5 Nice solitaire theories

Definition 11. Let G be a group, C ⋐ S ⋐ G. We say (C, S,G) has a nice
solitaire theory if the following holds: if P,Q have the same filling closure, and
neither of them has excess, then P →∗

C,S Q.

In our case studies below, we will show that G = Z2 has nice solitaire theory
for C = S either the triangle shape {(0, 0), (1, 0), (0, 1)} or the square shape
{0, 1}2. In both cases, excess can also be fully understood.

Note that, at least if G has finite fillings, then it is never true that all patterns
with the same filling closure and the same excess are in the same orbit. Namely,
let Q be any pattern with excess, and P any smaller pattern with φ(P ) = Q (for
example, P = S \ {c}, Q = S for some c ∈ C). Then it is easy to see that for
almost all g ∈ G, the filling closures of gQ ∪ P and gP ∪Q are equal, but they
are not in the same solitaire orbit.

5 Triangle solitaire on the plane

The triangle is the set T = {(0, 0), (1, 0), (0, 1)}. A T -solitaire move is called a
triangle move, and the T -solitaire process is referred to as triangle solitaire.

We have T = T2 where Tn = {(a, b) ∈ {0, . . . , n− 1}2 | a+ b ⩽ n− 1} is the
more general n-triangle. Sometimes, we refer to a generic n-triangle as simply a
triangle, and “the triangle” or “triangle shape” to refer to T .

In this section, we completely characterize the orbits of the triangle solitaire,
and prove various things about our favorite orbit, namely line orbit, which is the
orbit of the line Ln = {0, . . . , n−1}×{0}. Sometimes “a line” can also refer to a
translate of the line. By the edges of the n-triangle we refer to the intersections
of the edges of its convex hull with the lattice Z2; the line is one of the three
edges of the n-triangle.

The set Ln has the n-triangle as its filling closure. One of our main results is
that all sets of cardinality at most n whose filling closure is Tn are in the solitaire
orbit of Ln.
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A useful graph structure to consider on Z2 is the triangular lattice. Specif-
ically, the neighbourhood of a point v⃗ ∈ Z2 is the one depicted in Figure 3,
it corresponds to the points which can be involved in a triangle move with x.
The neighbourhood of a pattern A, denoted N(A) is the union of the neighbour-
hoods of its points. Two patterns A and B touch if A∩N(B) ̸= ∅ or equivalently
B ∩N(A) ̸= ∅.

Fig. 3: The neighbours of the orange cell are the blue ones.

Note that by squishing vertically by a factor of 1/
√
2, and then shearing

horizontal lines by 0.5, the triangular lattice becomes invariant under rotation
by 120 degrees, and triangles become equilateral. Although we find it more con-
venient to work with coordinates in Z2, we apply this observation in symmetry
considerations.

Note that when expressed in coordinates Z2, the 120-degree rotation coun-
terclockwise corresponds to the automorphism of Z2 given by the matrix M =(−1 −1

1 0

)
(when multiplying column vectors from the left). Formally, we may take

the phrase “up to rotation” to refer to an applications of M or M−1.
We begin with the observation that the choice of orientation of the line does

not matter:

Proposition 2. For every n, the three edges of Tn are in the same orbit.

Proof. The first line of Figure 4 explains by example how to transform the
horizontal edge into the diagonal, and the second one how to transform the
diagonal into the vertical edge (of course this is just a rotated inverse of the first
transformation). ⊓⊔

This proof shows that the number of solitaire moves needed to go from one
edge to another is at most O(n2). We will see later thatΩ(n2) steps are necessary,
and that the diameter of the orbit of the line is Ω(n3).

5.1 The filling process for the triangle

We now specialize the filling process for the triangle. This specific process has
been studied previously, in [5].

Since Z2 has the finite filling property and T is non-linear, the filling process
is terminating, and thus the filling closure φ(P ) is reached in finitely many steps.

Let us say that P fills if φ(P ) = Tn, where n = |P |. In [5], filling sets P were
called fill matrices. We will show that they in fact correspond to the elements of
the line orbit.
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Fig. 4: How to transform one edge into another for n = 5.

Fig. 5: An example of the filling process.

Lemma 18. For any pattern P , there are unique integers k1, . . . , kr and vectors
v⃗1, . . . , v⃗r such that φ(P ) =

⋃r
i=1 v⃗i+Tki

,
∑r

i=1 ki ⩽ |P | and N(v⃗i+Tki
)∩ (v⃗j +

Tkj ) = ∅ for each i ̸= j.

We refer to φ(P ) =
⋃r

i=1 v⃗i + Tki
as the fill decomposition of P . (Note that

this refers to the formal union rather than the set, but it is easy to see that the
set determines the values vi and ki up to a permutation.)

Proof. We prove this by induction on |P |. The case |P | = 1 is trivial.
Now assume the result is true for patterns of size at most n and let P be a

pattern of size n+1. Then if x ∈ P , P \{x} satisfies the induction hypothesis so
we can write φ(P \ {x}) =

⋃r
i=1 v⃗i + Tki . We now have three cases to consider.

First, if x ∈ φ(P −x) then φ(P ) = φ(P \{x}), and the inequality on the size
of P clearly continues to hold, as the right-hand size increase, but the left-hand
side does not.

Second, if x is not in the neighbourhood of φ(P \ {x}) then no additional
filling can be done with it, therefore φ(P ) = φ(P \ {x}) ∪ {x} and, as {x} is
a triangle (translate of T1), we have the appropriate decomposition, and both
sides of the inequality are increased by 1.



Solitaire of Independence 15

Finally, assume x ∈ N(v⃗1 + Tk1
). Then we can extend v⃗1 + Tk1

as in Figure
6. By doing so we may lose the property that the triangles do not touch, but if
some do so we can merge them by repeating the extension process. Notice that
if two triangles are merged, then the new triangle cannot be larger than the sum
of the sizes of the initial triangle, so the inequality on the triangles’ sizes is still
satisfied. (Merges may be triggered recursively, but nevertheless no merge can
increase the sum of triangle sizes.) ⊓⊔

Fig. 6: How to extend a triangle with a top neighbour or a subdiagonal
neighbour. The right neighbour case is symmetric to the top neighbour case.

Define the triangle excess of P as the difference eT (P ) = |P | −
∑r

i=1 ki.

Lemma 19. Triangle excess is equal to excess.

Proof. Excess is defined as

e(P ) = |P | − rank(φ(P )),

and triangle excess is defined as

eT (P ) = |P | −
r∑

i=1

ki.

where ki come from the fill decomposition of P . To show these equivalent is the
same as showing rank(φ(P )) =

∑r
i=1 ki.

Since φ(
⋃r

i=1 v⃗i+Lki) = φ(P ), we have rank(φ(P )) ⩽
∑r

i=1 ki. On the other
hand, if we have fill decomposition φ(R) = φ(P ) =

⋃
i v⃗i +Tki

then |R| ⩾
∑

i ki
by Lemma 18, so indeed rank(φ(P )) ⩾

∑
i ki as desired. ⊓⊔

5.2 Characterisation of the solitaire orbit through the filling

We can mimic the filling process using the solitaire, by using lines in place of
triangles, and pretending the excess elements are not there, as in Section 4.3.
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In line with the terminology in Section 4.4, we say a pattern P is a superline
if φ(P ) = v⃗ + Tn for some n, and P ⊃ v⃗ + Ln.

Lemma 20. Let P be a superline, and suppose v⃗ touches P . Then P ∪ {v⃗}
contains a superline in its solitaire orbit.

Proof. Suppose P contains u⃗+Lm and φ(P ) = u⃗+Tm. By translational symme-
try we may assume u⃗ = (0, 0). First suppose the exact equality P = Lm holds.
If v⃗ ∈ Tm, the claim is clear as P is already a superline.

Otherwise, up to rotational symmetry (and because of Proposition 2), we
may assume v⃗ is below P , i.e. v⃗ = (k,−1) for 0 ⩽ k ⩽ m. Figure 7 shows how we
can turn P ∪ {v⃗} into the line (0,−1) +Lm+1 = {0, . . . ,m}× {−1} by applying
solitaire moves, again proving the claim.

Fig. 7: How to extend a line with a bottom neighbour.

Now consider the general case P ⊃ Lm and φ(P ) = Tm, where we may again
assume v⃗ /∈ Tm. We have φ(P ) = φ(Lm) so φ(P ∪ {v⃗}) = φ(Lm ∪ {v⃗}) by
Lemma 5. Denote T ′ = φ(Lm ∪ {v⃗}).

We have Lm ∪ {v⃗} →∗ Q for some superline Q with of course φ(Q) = T ′, so
by Lemma 14 we have P ∪{v⃗} →∗ Q′ for some pattern Q′ ⊃ Q, and φ(Q′) = T ′.
Thus Q′ is also a superline. ⊓⊔

Lemma 21. Suppose that P,Q are (not necessarily disjoint) superlines, and
their filling closures touch. Then P ∪Q contains a superline in its solitaire orbit.

Proof. Up to rotational symmetry, translation, and exchanging the roles of P
and Q, we may assume φ(P ) = Tm and φ(Q) = v⃗ + Tn where v⃗ = (a, b) with
a ⩾ 0, b ⩽ −1, and n+ b ⩽ m− a. To see this, we recommend the reader draw a
picture and argue geometrically: if n+b > m−a, then the top corner of Q sticks
above the diagonal of P , in which case the right corner of P will be inside Q or
just next to it, and we may exchange the roles of P and rotate and translate to
get to the situation n+ b ⩽ m− a.

Since the filling closures touch, we have n ⩾ −b and a ⩽ m. Since Q is a
superline and all edges of the triangle are in the same orbit, Q′ = v⃗ + {0} ×
{0, . . . , n − 1} is contained in some pattern in the orbit of Q. Note that the
assumption on n is precisely equivalent to the fact that vectors inQ′ with positive
second coordinate are contained in Tn. Now we can simply apply the previous
lemma successively to the vectors in Q′ with negative second coordinate. ⊓⊔



Solitaire of Independence 17

Lemma 22. Let P be a pattern with fill decomposition φ(P ) =
⋃

i v⃗i+Tki
. Then

the orbit of P contains a union of superlines whose filling closures do not touch,
and where the corresponding lines are precisely the lines v⃗i + Lki .

Proof. We start by observing that every pattern P can be thought of as a union
of superlines

⋃
i v⃗i + Tki

, for example by taking ki = 1 for all i, and having the
v⃗i enumerate P .

Let P ′ =
⋃r

i=1Qi be in the orbit of P with Qi superlines, such that r is
minimal. Then the filling closures of distinct Qi do not touch: suppose φ(Qj)
and φ(Qk) do touch for j ̸= k. Then by Lemma 21, Qj ∪Qk contains a superline
Q in its solitaire orbit. By Lemma 15,

⋃r
i=1Qi then contains a set R ⊃ Q′ =

Q ∪
⋃

i∈[1,r]\{j,k}Qi in it solitaire orbit. Each element of R which is not in Q′

can be added in one of the superlines Qi or Q, since the union of their filling
closures is φ(P ). Thus, we have found a pattern in the orbit of P which can be
written as a union of strictly less than r superlines.

For the final claim, we observe that the filling closure of P must be precisely
the union of the filling closures of the superlines, which determines the lines to
be those corresponding to the fill decomposition. ⊓⊔

Next, we show that the non-touching superlines can be put in normal form.

Lemma 23. The line transports excess.

Proof. By Lemma 16 it suffices to show that there is a linear order p1, p2, . . . , pm
on φ(Ln)\Ln = Tn\Ln such that Ln transports 1-excess in Rk = P∪{p1, . . . , pk}
for all k. Note that m = |Tn \ Ln| = n(n− 1)/2. We use the order (a, b) ⩽ (c, d)
if b < d or b = d ∧ a < c. Note that extending this formula to all of Tn,
Ln = {0, . . . , n− 1} × {0} would form the minimal elements.

Figure 8 now explains the procedure for retrieving an element from anywhere
in the triangle to a position of the form (k, 1), without involving any positions
larger than the retrived element. Figure 9 in turn explains how to move an
element from position (k, 1) to position (0, 1). This concludes the proof. ⊓⊔

Since the line transports excess, we obtain that all superlines with the same
filling closure and same cardinality are in the same orbit. The representatives
informed by the previous proof are as follows: for 0 ⩽ k ⩽ n(n−1)/2, we denote
by Pn,k the shape composed of a line of length n to which k points were added
by filling the triangle under the line from top to bottom, and at each height from
left to right. Examples are shown in Figure 10.

Theorem 2 (Characterisation of the orbits). If P is a finite pattern then
there are integers n1, . . . nr and k1, . . . kr and vectors v⃗1, . . . v⃗r (uniquely de-
termined by P ) such that P →∗ ⋃r

i=1(v⃗i + Pni,ki
), and the filling closures

φ(Pni,ki
+ v⃗i) do not touch each other. Furthermore,

∑r
i=1 ni = |P | − e(P )

and
∑r

i=1 ki = e(P ).

Proof. The claim P →∗ ⋃r
i=1(v⃗i+Pni,ki

) follows by first observing that the orbit
contains a union of superlines whose filling closures do not touch, and then using
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Fig. 8: Fetching an excess point.

Fig. 9: Pushing excess to the left.

the fact the line transports excess to put each superline in normal form Pni,ki
.

For uniqueness, observe that (up to permutation) the vectors v⃗i and values ni
are determined by the fill decomposition, and ki by the cardinalities of the sets
P ∩ v⃗i + Tki

.
For the last claim, we recall that e(P ) is equal to the triangle excess defined

as eT (P ) = |P | −
∑r

i=1 ni, thus
∑r

i=1 ni = |P | − e(P ). Since solitaire preserves
cardinality,

|P | = |
r⋃

i=1

(v⃗i + Pni,ki
)| =

∑
i

(ni + ki)

so e(P ) =
∑

i ki. ⊓⊔

Corollary 1. Let P be a pattern with fill decomposition φ(P ) =
⋃r

i=1 v⃗i + Tki .
Then P has no excess if and only if P is in the solitaire orbit of

⋃
i v⃗i + Li.

Corollary 2. If P is a pattern, then P ∈ O(Pn,k) if and only if φ(P ) = Tn and
e(P ) = k.

Note that we now know the orbits for solitaire processes on the plane Z2

with all shapes of size 3. Indeed, such a shape is either linear (and thus easy to
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Fig. 10: From left to right: P4,0, P4,2 and P4,4. The purple cells are the excess.

analyse), or it is a triangle shape on a finite index subgroup of Z2, and the orbits
in different cosets of this subgroup are completely independent (Remark 1), and
are individually described by the triangle solitaire.

5.3 Size of the line orbit

One can build an element of the orbit of the line by choosing a corner, then
choosing a point on each line parallel to the edge opposed to the corner. This
gives 3n!− 3 elements of the orbit as the only patterns that can be created this
way from two different corners are the lines.

If P is in the line orbit, then the number of points in P in the first k columns
is at most k, and [3] gives the count c

(
e
2

)n
(n − 1)n−

5
2 with c = 4+2W (−2e−2)

e3
√
2π

for patterns with this property where W is the inverse function of f : z 7→ zez

(Lambert’s W function).
Combining these, we get the following bounds on the size of the line orbit.

Theorem 3. There are constants c1 and c2 such that c1e−nnn+
1
2 ⩽ |γ(Ln)| ⩽

c2
(
e
2

)n
(n− 1)n−

5
2 .

5.4 Excess sets for the triangle

We show that excess sets do not behave as intuitively as one might hope, even
for our simple triangle example. Namely, it is tempting to think that if a set has
excess, then we can remove some of its points to remove the excess, i.e. that the
size of a maximal excess set in P always matches the excess e(P ). This is not
true.

Theorem 4. For the triangle solitaire,

1. there exist patterns with arbitrarily large excess, which contain no excess sets
(in particular, phantom excess is unbounded),

2. visible excess (equivalently phantom excess) can vary by an unbounded amount
within one solitaire orbit,

3. there exist patterns where there are maximal excess set of different cardinal-
ity.

Proof. For the first claim, consider the pattern P in Figure 11. It is clear that
its filling closure is the triangle, so e(P ) = 1. However, this pattern has no
nonempty excess sets. To see this, observe that the process of joining triangles
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always merges two existing triangles to a larger one, namely two T1s to T2, then
two T2s to T4, and then two T4s to T7. If any element is removed, then one of
these pairs cannot be joined.

Fig. 11: Here, e(p) = 1 but E(P ) = {∅} so Ê(P ) = 0.

We see that in fact when any element is removed, the entire bottom left
corner of the triangle is left empty. This allows us to continue the construction
inductively: We can add another triangle below whose top does not become filled
if any element is removed. Then together these triangles will fill a large triangle
to the bottom right from P , but if any element is removed, then this triangle
will stay empty in the filling closure. We obtain more and more excess at each
step, but still have no nonempty excess sets.

For the second claim, observe that the pattern we constructed (with arbitrar-
ily large phantom excess) has in its orbit a pattern containing the corresponding
line, and by Lemma 12 any such pattern has excess equal to its visible excess,
since the line itself has no excess.

For the third claim, consider Figure 12. ⊓⊔

Fig. 12: The blue and orange sets are both maximal excess sets but do not have
the same cardinality.

6 A brief look at other shapes on the plane

6.1 The square shape

In this section we study the solitaire action induced by the 2 × 2 square shape
{0, 1}2. We show that the theory can be developed entirely analogously as for
the triangle.
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Fig. 13: The action of the square shape.

The action of the square rotates a square with a single empty cell as depicted
in Figure 13.

The filling process for the square shape of course completes squares which
are missing a single point. By analogy with the triangle shape, we expect the
orbit of a finite pattern to be contained in non touching rectangles which can be
computed by filling the initial pattern, and those orbits to be recognisable with
only the shape of the filling and by counting the amount of excess elements in
each rectangle.

With respect to the square, a good notion of neighbours of a point are the
eight points surrounding it, and the neighbourhood of a pattern is the set of
points which have two adjacent points of the pattern as neighbours. (Note that
this is precisely the condition for being able to apply a square solitaire move.)

Examples are given in Figure 14. The notion of touching is then again defined

Fig. 14: The neighbours of the orange pattern are the blue cells.

as A touches B if A ∩ (B ∪N(B)) ̸= ∅.

Rectangles and crosses. As already indicated, the natural analog of the trian-
gle Tn for the square solitaire is a rectangle Rm,n = {0, . . . ,m−1}×{0, . . . , n−1}.
A natural analog of a line Ln for square solitaire is in turn a horizontal line in-
tersecting a vertical line. We call such a pattern a cross. Notice that the square-
shape filling of a cross is a rectangle of width the length of the horizontal line
and height the length of the vertical line.

Lemma 24. All crosses that fill the same rectangle are in the same orbit.

Proof. Using the moves described in Figure 15, one can shift the vertical line to
the left. By reversing the moves, the line shifts to the right. By rotating them,
the horizontal line can be shifted up or down. ⊓⊔
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Fig. 15: How to shift the vertical line of a cross to the left. All the other
movements are symmetrical.

Shape of the square filling

Lemma 25. With respect to the square shape, the filling of any pattern P is
a set of non touching rectangles R1, . . . , Rk whose sizes satisfy

∑k
i=1(w(Ri) +

h(Ri) − 1) ⩽ |P |, where w(Ri) and h(Ri) are respectively the width and height
of Ri.

Again, we refer to
⋃
Ri as the fill decomposition of P , and its uniqueness is

clear.

Proof. Let P be a pattern. First, notice that a maximal connected subpattern
Q of φ(P ) has no neighbour because otherwise a cell could be filled.

Now consider a maximal connected subpattern Q of φ(P ) that is not a rect-
angle. Then Q has an inner corner, thus Q has a neighbour. Hence the result on
the shape of the filling.

We now prove the inequality on the size of the rectangles by induction on
|P |.

If P is a single point, then φ(P ) = P is a rectangle of length and height 1 so
the inequality holds.

Now assume the inequality holds for all patterns of size n, and let P be a
pattern of size n+ 1. Let x ∈ P , |P \ {x}| = n, so the rectangles that compose
φ(P \ {x}) satisfy the inequality. If x is in one of those rectangles, then φ(P ) =
φ(P \ {x}), and we have the inequality. If x is not in the neighbourhood of a
rectangle then φ(P ) = φ(P \ {x}) ∪ {x}, and again the inequality holds.

Lastly, if x is in the neighbourhood of rectangle Ri, for example x is adjacent
to the right size of Ri, then the filling adds a column to rectangle Ri, augmenting
its length by 1.

The rectangles may intersect, triggering a sequence of merges. But if Ri

intersects the neighbourhood of another rectangle Rj , then the filling merges
them into a rectangle R that satisfies w(R) ⩽ w(Ri) + w(Rj) and h(R) ⩽
h(Ri)+h(Rj), and at least one of these inequalities is strict. From this, it follows
that the inequality continues to hold when rectangles are merged. ⊓⊔

Characterisation of the orbits. If the filling of pattern P is
⊔r

i=1Ri then its
square excess is eS(P ) = |P | −

∑r
i=1(w(Ri) + h(Ri) − 1). We can see as in the

case of the triangle, that square excess is equal to excess in the abstract sense.
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For a, b, k integers, let La,b,k be the L-shape of length a and height b with k
points in the rectangle in generates, filled from left to right and bottom to top.
Examples are given Figure 16.

Fig. 16: From left to right, L5,4,0, L5,4,2 and L5,4,6.

Lemma 26. Every cross transports excess.

Proof. By Lemma 17 and Lemma 24, it suffices to show this for one cross. We
use the cross with the left and bottom edges of the rectangle, i.e. Lm,n,0.

Excess transportation can be now shown using Lemma 16 by using the lexico-
graphic order, and is even easier than the corresponding process for the triangle.
Namely, by the procedure in Lemma 24 we can move the vertical line of a cross
so that it is next to an excess point, then move it down, then move the verti-
cal line back to the left, and transport the excess point to get the final pattern
Lm,n,1.

This process only uses elements below the excess point in lexicographic order,
and we conclude from Lemma 16 that the cross transports excess. ⊓⊔

Theorem 5 (Characterisation of the orbits of the square). If P is a
pattern, then it is in the orbit of the pattern composed of La,b,k-shapes corre-
sponding to the fill decomposition of φ(P ) and adding the excess present in the
rectangle. I.e., if φ(P ) =

⋃k
i=1[(xi, yi), (xi + ai, yi)] × [(xi, yi), (xi, yi + bi)] and

ki = |P ∩Ri| − (ai + bi − 1) then P ∈ O
(⋃k

i=1 (xi, yi) + Lai,bi,ki

)
.

Proof. This is proved analogously as for the triangle: we first show that we
can apply the solitaire process to turn P into a disjoint union of supercrosses
(patterns containing a cross, whose filling closure is the same as that of the
cross) whose filling closures do not touch. The union of the filling closures of
these super-crosses form the filling closure of P .

For this, we observe analogously to the case of the triangle, that two touching
supercrosses can be merged into a supercross. Thus, a pattern in the orbit of P
which is a union of a minimal number of supercrosses will in fact be a union of
non-touching disjoint supercrosses.

Finally, we can use the previous lemma (the excess transportation property
of crosses) to put the super-crosses in the stated normal form. ⊓⊔
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6.2 General shapes S admit interaction without merging

Polygons and fillings. Consider a general non-linear shape S ⋐ Z2, i.e. not
contained in any affine line. We say S ⊂ Z2 is discrete-convex if it is the inter-
section of a geometrically convex subset of R2 and Z2.

Recall that P → Q is an S-solitaire move if there is a vector x ∈ Z2 such
that |P ∩ (x⃗+S)| = |Q∩ (x⃗+S)| = |S| − 1 and P△Q ⊂ P2(x⃗+S). An S-filling
step consists in adding to a pattern such that |P ∩ (x⃗+S)| = |S|− 1 the missing
point of x⃗+ S. This process is confluent and when it exists, we denote its limit
φS(P ).

Previously, the filling of a pattern had the “same shape” as the shape used
for the solitaire moves. The following definition aims at generalising this idea for
arbitrary S.

Definition 12. Given a shape S, an S-polygon is a pattern obtained by inter-
secting Z2 with a geometric polygon in R2 with the same edge directions as the
convex hull of S, each edge being at least as long as the corresponding edge in
S’s convex hull (in terms of the number of lattice points). We define the S-hull
of P as HS(P ) = Q ∩ Z2 where Q ⊂ R2 is the smallest polygon with (at most)
the same edge directions as S containing P .

Notice that an S-hull is not necessarily an S-polygon since some edges might
be too short.

•
• •

• •
•

•
• •

• •
• •

•
•

•
• •

• •
• •

Fig. 17: With S the red shape, the blue pattern is an S-polygon but not the
orange one because the right side is too short. Here the solid lines correspond

to standard generators of Z2, and dotted lines show the dual lattice of
Z2-centered unit squares.

The following two lemmas are essentially the two-dimensional version of
Proposition 1. We give direct (slightly informal) proofs.

Lemma 27. The S-hull of every set is well-defined, and is finite.

Proof. For each edge e of S, there is a corresponding normal vector v⃗ (pointing
outside), and points with positive dot product with v⃗ define a half-space He.
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Given P ⊂ R2, we can see P as a subset of R2 and slide copies of all these
half-planes He as close to P as possible, and finally take the convex polygon
spanned by their edges. ⊓⊔

Unlike in the case of the triangle and square, there nevertheless does not
always exist a smallest S-polygon containing a given finite set P ⊂ Z2, because
the edges in the S-hull can be too short. This is in particular the case when P
is smaller than S, an example is given in Figure 18.

•
• •

• •
•

•
•

Fig. 18: With S the red shape, the blue pattern has 3 smallest S-polygons
containing it.

Lemma 28. The S-filling of pattern P is contained in its S-hull.

Proof. Let L be a line parallel to an edge on S, then the filling process can add
points on the outer side of the line only if there is already some point on the
outer side. Therefore the filling process cannot add points outside the S-hull. ⊓⊔

In the case of the triangle shape and the square shape, we were able to
identify a set of patterns (triangles and rectangles) and a notion of touching,
such that non-touching patterns evolve entirely independently in the solitaire (if
the patterns do not touch), or they merge into a larger pattern of the same kind.

In fact, these sets were precisely S-polygons: for a triangle, the sets Tn are
precisely the triangle-polygons, and rectangles {0, . . . ,m − 1} × {0, . . . , n − 1}
are precisely the square-polygons.

The following example illustrates that, unlike in the case of the triangle and
the square, for a general shape S we can have two S-polygons sets which do not
“merge” (in that their union is closed under filling, and is not an S-polygon), yet
the solitaire process can in a nontrivial way share a hole between the two sets.

Example 1. Consider the red shape S in Figure 19, and the pattern P formed
by the orange, green and blue points. One can apply solitaire moves to the left
(orange) of right (blue) part separately, moving the hole arbitrarily.

If we move the hole in the orange part to the left, then we can borrow a
green point from the middle. This can freeze the process in the blue part, until
the element is returned.
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Fig. 19: An example of “non-merging shapes” with non-trivial interaction.

The filling closure of the colored area is the area with the orange and blue
outlines, i.e. the filling process adds only two points. This limit does not fit our
notion of an S-polygon.

Remark 3. For large S, one can form long chains out of such non-merging S-
polygons, and even cycles and other planar graphs, where elements can be ex-
changed between the various parts, but which do not merge into a discrete-convex
pattern.

We do not yet have clean descriptions of the processes described in the pre-
vious example and remark, but we can make are least a vague conjecture:

Conjecture 1. There is a notion of S-components such that the maximal S-
components of a pattern closed under filling are either S-polygons or single
points (those component being not necessarily disjoint), and the solitaire can be
understood as in the triangle and square case, except that distinct S-components
may share points.

Contours and Orbits. One thing that does work with general shapes is the
notion of a contour from [7]. It provides a natural generalization of the line in
triangle solitaire, and the cross (or an L-shape) in the case of square solitaire.

Here we find it helpful to work with more general groups G, to avoid getting
caught up in geometric details, although our particular emphasis will be on the
groups Zd.

Recall that a total order < on (the elements of) a group G is bi-invariant
if a < b ⇐⇒ ca < cb ⇐⇒ ac < bc for all a, b, c ∈ G. Such orders exists for
example for free abelian groups and free groups.

Definition 13. Let us call s ∈ S a corner if there is a bi-invariant order on
G such that s is the maximal element of S (it is then minimal for the inverted
order, which is also bi-invariant).3

The following fact is well-known:

3 It seems that here we need a bi-invariant order, while [7] only needs a left-invariant
order.
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Lemma 29. The (bi-)invariant orders on Zd are fully described as follows: First
order vectors according to their dot product with a unit vector v⃗. If the kernel of
the projection to the line spanned by v⃗ has non-trivial intersection with Zd, then
this intersection is a finitely-generated abelian group of smaller rank. Order it
inductively.

In particular, our notion of corner agrees with the usual notion of a corner
in convex geometry.

Definition 14. Suppose G is a group, S ⋐ G and suppose c ∈ S is a corner of
S. If P is a pattern, its S-contour with respect to c ∈ S is

CS,c(P ) := {x ∈ P | xc−1S ̸⊂ P}.

Note that the set of x such that xc−1S ̸⊂ P can be expressed as “those x
such that the if g is the translation such that gc = x, we have gS ̸⊂ P ”, since
gc = x ⇐⇒ g = xc−1.

Note also that if c = eG (which we )may assume without affecting the solitaire
process by translating the shape, then this simplifies to {x ∈ P | xS ̸⊂ P}.

Examples of contours on the plane are shown in Figure 20.

Fig. 20: The dark blue points are the contour of the light blue polygon for
shape S in orange with respect to the red corner.

The following result is essentially from [7]. For the proof, we need the coencept
of a TEP subshift discussed in Section 8 (here, we only cite a fact about TEP
subshifts from [7], so it is not necessary to take a look at the definition).

Proposition 3. Any two contours of a given pattern with the same shape have
the same cardinality.

Proof. By [7, Lemma 28], if we pick any TEP subshift with the given shape
S ⋐ G, then all contours of a domain P ⊂ G can be filled arbitrarily and their
contents uniquely determine a valid P -pattern. (In the terminology of Section 8,
the contours of P ⋐ G are independent and P -spanning sets.)

The number of patterns with shape CS,c(P ) is then precisely the logarithm
(with base the size of the alphabet) of the number of legal patterns on the domain
P . In particular, it does not depend on the choice of c. ⊓⊔

⊓⊔
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The above proof is rather indirect, as it involves the choice of an arbitrary
TEP subshift. We show that under some conditions, one can apply the solitaire
process to move between two contours.

Definition 15. Suppose c, c′ ∈ S are two distinct corners of S. We say c and
c′ are sweep swappable if there exists a bi-invariant total order on G such that
c = minS and c′ = maxS with respect to this order.

Lemma 30. Let c, c′ ∈ S be sweep swappable. Then for any P ⋐ G, the contours
CS,c and CS,c′ are in the same solitaire orbit.

Proof. Let < denote a total bi-invariant order on G such that c = minS and
c′ = maxS. By translating S on the left (which preserves solitaire moves and
contours) we may assume c′ = eG. Let C,C ′ ⋐ P be the contours corresponding
to c, c′ respectively. Order S \ C in increasing order as g1, . . . , gn. Now define
C0 = C and inductively Ci = (Ci−1 ∪ {gi}) \ {gic}. We claim that this is a valid
solitaire move, namely the solitaire move at gi that moves the hole from gic to
gi.

For this, we need to show that |giS ∩Ci−1| = |S| − 1, and that gi /∈ Ci. The
latter fact is clear since gi is larger than any gj added previously. For the former,
observe first that the filling process following this solitaire process (i.e. the result
of applying filling moves at each gjS for j < i, which can be proven well-defined
by induction) would certainly have added the remaining |S| − 1 elements, since
they are smaller, thus either on the list of the gj , or in the initial contour C.

Thus it suffices to show that the application of a previous solitaire move at
gjS taking us from Cj−1 → Cj did not remove any of the elements in giS. But
the removed element when applying a move at gj is always gjc. Since c = minS,
and the order is bi-invariant, gjc ≤ gjs ≤ gis for any s ∈ S, with equality only
if j = i and c = s.

We claim that we now have Cn ⊃ C ′, equivalently P \ Cn ⊂ P \ C ′. To see
this, suppose that gc ∈ P but gc /∈ Cn. From gc ∈ P we have that gc ∈ Ck for
some k. From gc /∈ Cn we have that gc is of the form gic for some i (since it was
removed at some point). The fact it was indeed removed means that gS ⊂ P so
gc /∈ C ′. ⊓⊔

In particular, all contours are in the same solitaire orbit whenever all the
corners are in the same equivalence class under the transitive closure of sweep
swappability.

Lemma 31. If S ⊂ Z2 is a shape whose convex hull does not have two pairs of
parallel edges, then all its contours are in the same solitaire orbit.

Proof. Consider the following representation of polygon S : let u⃗1, . . . , u⃗k be the
vectors normal to the edges of S, oriented toward the exterior of S. Take a circle
C with centre O and represent edge ei by the intersection between C and the
half line with origin O and direction u⃗i, and each corner by the arc between the
two edges. We claim that corners a and b are sweep swappable if a diameter of
C joins there arcs.
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Fig. 21: On the left, an illustration on the circle representation of a polygon.
On the right, the notations used for the proof.

Note that the open arcs corresponding to corner a consists of the possible
directions of unit vectors v⃗ which make a a minimal (or maximal) element of
the corresponding order Lemma 29. Thus if a diameter joins two arcs, then the
corners are sweep swappable, thus the corresponding contours are in the same
solitaire orbit for all patterns.

Now notice that if there are no opposite points (which corresponds to a pair
of parallel edges) on the circle, then any border can be crossed by crossing the
circle twice. One pair of opposite points is not a problem because we can simply
move along the circle in the opposite direction. ⊓⊔

In the case of Z2, we can in fact describe a process that allows to transform
one contour into another it cannot be swapped with.

Theorem 6. In dimension 2, all the contours of a pattern are in the same orbit.

Proof. If S has two parallel edges e and e′, let c and c′ be the extremities of
respectively e and e′ on the same side (such that the line from c to c′ is not a
diameter). Then the contours C and C ′ with respect to c and c′ can be exchanged
as follows. In C, as the other end of e′, b′, is diametrically opposed to c, an S-
solitaire step can be done there. Follow edge e′ from b′ to c′ and at each step
move the point in corner b′ to c. Then follow e′ from c′ to b′ and move the point
in corner c′ to b′. Repeat at each line until you get C.

If looked at in the circle representation, this process allows to exchange cor-
ners whose section can be joined by a line parallel to a diameter, thus allow to
cross it. Combined with Lemma 31, it follows that all contours are in the same
orbit. ⊓⊔
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7 Quantitative and algorithmic aspects of convex
solitaires

7.1 Complexity of the identification of the orbit of a pattern

The characterisation of the orbits through filling and excess provides a polyno-
mial time algorithm to identify to which orbit a given pattern belongs for the
triangle and square solitaires.

The algorithm is the following for the triangle shape:

Algorithm 1 (Identify orbit) Data: pattern P . Result: the canonical repre-
sentative of the orbit of P .

1. Fill the pattern.
2. Divide the filling into triangles v⃗1 + Tk1

, . . . , v⃗r + Tkr
.

3. Count the excess in each triangle, the canonical representative of the orbit
of the pattern is

⋃r
i=1 v⃗i + Pki,e(P∩(v⃗i+Tki

)).

It can easily be adapted to the square shape, and some other well behaved
smalls shapes.

This algorithm has a total time complexity of O(n2) where n = |P |: The first
two steps are linear in the number of points in φ(P ) and |φ(P )| ⩽ n(n+1)

2 for
the triangle shape so they run in time O(n2). Step 3 is then linear so the total
time complexity of the algorithm is O(n2).

For shapes other than the triangle, it still holds for S-polygons that |P | ⩽
|CS(P )|2 so the bound remains the same.

7.2 Number of steps needed to put a pattern in normal form

One can use the argument in Lemma 20 and Lemma 21 to successively merge
superlines following the process of merging triangles in the filling process.

A single step of adding a new element into an existing superline takes at
most O(n2) steps: the process of turning one edge into another using the solitaire
process clearly takesO(n2) steps, and adding an element once we have the correct
edge takes O(n) steps. Thus, after O(n3) steps we have turned any pattern of
cardinality n into a union of superlines.

It suffices to show that a superline can be turned into the canonical repre-
sentative Pn,k in O((n+ k)3) steps.

For this, the argument in Lemma 16 can be unraveled to give a practical
procedure for fetching the excess one element at a time, at all times keeping the
excess lined up, i.e. so that at all times the pattern is of the form Pn,k ⊔R.

One can use the procedure in Figure 9 to move all excess to the left on the
top line, and the one in Figure 22 to move excess from the top line to the line
below, if it is not yet full. Figure 23 illustrates how one can fetch elements if
excess is already lined up.

Algorithm 2 (Transform a pattern to its canonical form)
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Fig. 22: Pushing excess to the right.

Fig. 23: Fetching an excess point with some excess already lined up.

1. Merge the different components and form superlines using the process de-
scribed in Lemma 21

2. Fetch the excess with the process described in Lemma 16.

For the square shape, the same algorithm can be applied by replacing super-
lines by supercrosses and noticing than an excess point can very easily be moved
along a line.

Indeed, naively implemented, this algorithm takes O(n2(n + k)), where k
denotes the excess: The first step takes O(n3), since each merging takes O(n2)
time and we merge at most n times. The second step takes O(n2k) if we fetch
the k many excess points one by one, as each fetch takes O(n2).

One can in fact achieve O(n2 + nk). Such a process for the triangle (resp.
square) is as follows:

1. Form a vertical line (resp. a bottom left cross).
2. Move the line from left to right, and after moving it by one column, use it to

move down all the excess point to its left to the bottom of there column. You
now have a horizontal line (resp. a bottom right cross) with piles of excess
on it.

3. Move the excess points to the right or left to form horizontal lines on top of
the bottom one.

Step one requires O(n2) moves. Step 2 requires again O(n2) moves for the
line movement from left to right and at most n moves to move each excess point
down since one point cannot go down by more than n so a total of O(kn) moves.
Step 3 takes O(kn) moves for the same reason.

Theorem 7. For the triangle and the square solitaire, the orbit of a pattern
with n elements has diameter at most O(n3).
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Form triangles. Merge red and green
and blue and pink.

Merge blue and yellow. Merge blue and orange. Merge blue and red.

Fig. 24: An example of how to get back to the line from a random element of
its orbit.

This is in fact optimal for the line orbit in the triangle solitaire.

Theorem 8. The diameter of the orbit of the line of length n, seen as a graph,
is Θ(n3).

Proof. We are going to build an infinite family of patterns that require Ω(n3)
steps to get back to the line.

Let P0 be the empty pattern. Pn+1 is inductively built by extending Pn as
described in Figure 25 where the grey triangle is the triangle in which Pn’s orbit
is confined. In pattern Pn+1, Ω(n2) steps are required to fetch the three coloured

Fig. 25: Left: The extension of Pn into Pn+1. Right: A schematic representation
of Pn+1 used in the proof.

points.
Indeed, first notice that up to renaming points, the blue point has to move

right to fetch the orange one, then the orange one will have to move down to
fetch the green one and finally the green one will have to go up to prepare for
the next extension. Now let us analyse the movement of the blue point, starting
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from the first moment it touches another triangle. To move a point right, one
need a point in the column at its right. We’ll prove that this means that at some
point in the process, half of the points of the pattern have to be in the left half
of the triangle.

Mark the blue point, and whenever an unmarked point is in the same column
as a marked one, mark it. Consider column i from the left, and the first marked
point x to reach it. Clearly the point x moves from column i − 1 to column i,
and this requires us to have an unmarked point in column i to allow this. This
point was unmarked, and is now marked. Therefore, when the blue point has
reached column 3n

2 (the middle column), there are at least 3n
2 marked points, all

of which were in the blue triangle in Figure 25 at some point during the journey
of the blue point.

The same reasoning on the orange and green point gives that at some point
of the process, between the first moment the blue point moves, until the point
where we are ready to move the blue point of the next level, 3n

2 points were
in the orange triangle and the same amount in the green one. As the pattern
Pn only has 3n points, at least 3n

2 need to be moved from one subtriangle to
another, therefore there is a pair of triangles that will share at least n

2 points.
Those at least n

2 points will need to be moved by a mean distance of at least n
4 ,

which requires at least n2

8 steps. Thus pattern Pn requires Ω(n3) moves to be
transformed into a line. ⊓⊔

Conjecture 2. The orbit of a contour of cardinality n of an S-polygon has diam-
eter Θ(n3)

A good candidate for patterns far from a contour are the ones built by adding
points around a pattern so that each point extends the filling closure of the pat-
tern by a line, and adding the points on successive sides so that the contour has
to be changed between the mergings. Such a pattern for the square is shown in
Figure 26. The natural method to put it in normal form takes Θ(n3) moves. We
have not proved that this is optimal, but suspect this can be shown analogously
to the triangle case.

Fig. 26: A pattern we conjecture is at Θ(n3) steps from the cross. Pn (gray) is
extended into Pn+1 by adding the green, blue, purple and pink points, red and

orange are here to show how it keeps growing.
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7.3 Distance between two contours

Proposition 4. For any shape S, the transformation from one contour to an-
other cannot be done in o(n2) steps, for some S-polygons of cardinality n.

Proof. We define a metric on the set of finite subsets of Z2 with a given cardinal-
ity by ∆(A,B) = minf :A∼B

∑
a∈A d(a, f(a)) where d is the Euclidean distance

on Z2. As any move with the solitaire moves exactly one point, by a distance
at most the diameter of S, the number of moves needed to transform pattern A
into pattern B is Ω(∆(A,B)).

Let us first consider the triangle. Let n ∈ N, denote Hn = [|0;n− 1|]× 0 and
Vn = 0 × [|0, n − 1] respectively the horizontal and the vertical line of length n
with origin 0.

∆(Hn, Vn) = min
f :Hn∼Vn

∑
x∈Hn

d(x, f(x)) = min
σ∈S

n−1∑
k=0

√
k2 + σ(k)2 ⩾

n−1∑
k=0

k =
n(n− 1)

2

.
Let S be now a general convex shape, and suppose S has at least 4 sides (the

case of 3 edges being similar). Notice that because of the triangular inequality,
any bijection that reaches ∆(A,B) must fix every point of A ∩ B. Consider a
family of S-polygons Pn for n ∈ I ⊂ N infinite such that the contours of Pn have
size n and there is a constant c such that every edge of Pn has length at least n

c
and two opposite edges have distance at least n

c . One can be built by choosing
any S-polygon, then taking the family of polygons obtained by multiplying the
lengths of its edges by an integer.

Let C and C ′ be two contours of Pn. Pn is convex, so the hypothesis on the
length and distance of edges implies that any two non consecutive edges of P
are at distance at least n

c of each other.

– If C and C ′ differ by exactly one edge, then there has to be three consecutive
edges of P , e, f, e′ such that e ∈ C\C ′, e′ ∈ C ′\C and f /∈ C∪C ′. Since e and
e′ are not consecutive so ∆(C,C ′) ⩾ ∆(e, e′) ⩾ d(e, e′)min(|e|, |e′|) ⩾

(
n
c

)2.
– Else, C and C ′ differ by two edges, e, f ∈ C and e′, f ′ ∈ C ′. If they are not

consecutive, the inequality is obtained just as above.
– If they are consecutive, for example f follows f ′, then by the triangular case
∆(f, f ′) ⩾ α

(
n
c

)2 with α > 0, by the remark above ∆(e, f ′), ∆(e′, f) ⩾
(
n
c

)2
and combining both (depending on whether e and e′ are consecutive or not),
∆(e, e′) ⩾ α′ (n

c

)2. Thus ∆(C,C ′) ⩾ ∆(e ∪ f, e′ ∪ f ′) ⩾ α′′ (n
c

)2
⊓⊔

This shows in particular that Proposition 2 is roughly optimal:

Corollary 3. For the triangle solitaire, the distance between two distinct edges
of Tn is Ω(n2).
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In particular, while we like to to think of the line as the “center” of the line
orbit, this makes sense only when we consider O(n2) to be a small distance
(which makes some sense because the diameter Ω(n3) is much larger). We do
not know if there are elements in the line orbit which are essentially closer to
their rotations (by the matrix M).

8 Connection to TEP and permutive subshifts

8.1 TEP and permutivity

Definition 16. Let C ⋐ S ⋐ G and let A be a finite alphabet. Suppose P ⊂ AS

is such that |P | = |A||S|−1, and for each c ∈ C, the projection π : P → AS\{c}

given by π(p) = p|S\{c} is surjective. Then the set of x ∈ AG such that for all g,
g−1x|S ∈ P is called a (C, S)-TEP subshift.

The TEP subshifts (with a specific choice of C for a given shape S, discussed
below) were introduced in [7] by the first author. Here, we develop the connection
to solitaire in slightly more generality. (In [7], the definition is in fact generalized
in another direction, to “k-TEP subshifts”, but they do not seem to admit a
notion of solitaire.)

Much of the theory makes sense under the weaker assumption of permutivity,
which we defined below.

Definition 17. Let G be a group, and let C ⋐ S ⋐ G. Let A be a finite alphabet
and X ⊂ AG be a closed set. We say X is (C, S)-permutive if for each c ∈ C
and g ∈ G there exists a function fg : AS\{c} → A such that for every g ∈ G we
have

g−1x|S = p =⇒ fg(p|S\{c}) = pc.

An (S, S)-permutive subshift is called simply S-permutive.

Such a set X may not be a subshift. When all the functions are the same,
i.e. ∀g ∈ G : fg = f , the condition simplifies to

∀p ∈ X|S : f(p|S\{c}) = pc,

which is a property of TEP subshifts (but the assumption about surjectivity of
projection to S \ {c} is missing).

A special case of permutivity was studied by [2] under the name polygonal
subshifts. This special case is that the S ⋐ Zd, C is the set of corners of S in
the geometric sense, and X is a subshift.

The term permutive comes from the following lemma (whose proof is straight-
forward and omitted).

Lemma 32. Let G be a group, and let C ⋐ S ⋐ G. Let A be a finite alphabet
and X ⊂ AG be a closed set. If X is (C, S)-permutive, then for any g ∈ G and
distinct c, c′ ∈ C, writing T = G \ {gc, gc′}, we have for all x ∈ AT a bijection
π : A→ A such that

x ⊔ agc ∈ X|T∪{gc} ⇐⇒ x ⊔ π(a)gc
′
∈ X|T∪{gc′}.

Furthermore, the permutation π only depends on x|gS\{gc,gc′}
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8.2 Independent sets

Definition 18. Let G be a group, and let X ⊂ AG be a closed set. The topo-
logical independence sets TI(X) are the sets T ∈ P(G) satisfying X|T = AT .
If µ is a probability measure on X, then a finite set T ⋐ G is equidistributed
if the µ([p]) = µ([q]) for any p, q ∈ AT . The µ-independence sets Iµ(X) are the
closure of the equidistributed finite sets T ⋐ G in the product topology of P(G).

Note that as stated, both types of independence sets depend on the alphabet
A. One may always use the effective alphabet (symbols that actually appear
in configurations) unless stated otherwise. Note that the assumption on µ in
particular implies that if T is equidistributed then all patterns AT are in the
support of the marginal distribution of µ on T .

Theorem 9. Let G be a group, let C ⋐ S ⋐ G be as above, and let X ⊂ AG be a
(C, S)-permutive closed set. Then the sets of topological independence TI(X) are
closed under the (C, S)-solitaire. If µ is a Borel probability measure on X, then
the µ-independence sets are closed under (C, S)-solitaire. Both sets are down
sets under inclusion, and are topologically closed subsets of P(G). If X is shift-
invariant, then TI(X), Iµ(X) are shift-invariant sets.

Proof. We start by proving the last three claims. First, the set TI(X) is obvi-
ously down, and Iµ(X) is down because it is the closure of finite µ-independent
sets, which in turn are down because for T ′ ⊂ T ⋐ G, the measure on AT ′

is
determined by the one on AT by the natural projection from AT to AT ′

, where
all fibers have equal cardinality.

Topological closure of Iµ(X) is true by definition. For TI(X) it suffices to
show that X|P = AP if and only if X|Q = AQ for any Q ⋐ P . But this is
immediate from the fact that π : X → X|P is a continuous map between two
closed subsets of Cantor space (which are compact Hausdorff).

If X is shift-invariant, then shift-invariance of TI(X) and Iµ(X) are trivial.
Now we show closure under solitaire. Let T ⊂ G be a set of topological

independence, meaning X|T = AT . Suppose T →C,S T
′ meaning

|T ∩ gS| = |T ′ ∩ gS| = |S| − 1 ∧ T△T ′ ∈ P2(gC).

Let T \ T ′ = {gc}, T ′ \ T = {gc′} By the definition of (C, S)-permutivity of X,
there are functions f = fg,c : AS\{c} → A and f ′ = fg,c′ : AS\{c′} → A, such
that for every g ∈ G we have

g−1x|S = p =⇒ f(p|S\{c}) = pc

and
g−1x|S = p =⇒ f ′(p|S\{c′}) = pc′ .

Let U = T ∩ T ′ and V = T ∪ T ′. Note that T \ U, T ′ \ U are singleton sets
contained in gC, and similarly for V \ T, V \ T ′. Now, fix x|U ∈ AU , let E ⊂ A
be the set of symbols a ∈ A such that x|U ⊔ agc ∈ X|T , and E′ ⊂ A the set of
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symbols a ∈ A such that x|U ⊔ agc′ ∈ X|T ′. Clearly E = A by the assumption
that T ∈ TI(X). Our task is precisely to show that E′ = A.

We give a bijection between these sets. For this, observe that for x ∈ X,
the restriction x|T uniquely determines x|V and thus x|T ′ (using the property
of f ′), and the restriction x|T ′ uniquely determines x|T . In particular, there
is a bijection between X|T and X|T ′, which can only change symbols in the
symmetric difference of T, T ′. This is only possible if indeed E′ = A (since
E = A), concluding the proof for the sets of topological independence.

If µ is a probability measure, the proof is similar. Namely, suppose T is a
limit of finite patterns Q such that µ is uniform on the finite patterns X|Q. Then
fix Q ⊃ gS and let P = X|Q. We have that the distribution on the legal patterns
P ′ = X|Q \ {gc} ∪ {gc′} is also uniform, because as above we have a bijection
between P and P ′. Now T ′ is a limit of such patterns Q \ {gc} ∪ {gc′} = T ′. ⊓⊔

The main result of [7] is that if X is a (C, S)-TEP-subshift on the group G
and C ⋐ S can be interpreted as a set of corners of S for an abstract convex
geometry on G satisfying some additional properties, then the sets of topological
independence form a subshift containing every finite convex set, and there is a
shift-invariant probability measure µ on X such that all finite convex sets are
equidistributed in µ (among the legal patterns).

Remark 4. We note that if µ is a Borel probability measure on a (C, S)-permutive
X, then the set of P ⋐ G such that µ is equidistributed on the patterns X|P is
also closed under the solitaire process, by a similar proof as above. This obser-
vation gives some motivation for studying the solitaire on sets that are are not
independence sets for a TEP subshift.

The fact the topological independence subshift is closed under solitaire is the
original motivation for the study of the solitaire process. The S-TEP subshifts
are an interesting class of subshifts (generalizing the Ledrappier subshift and
spacetime subshifts of bipermutive cellular automata), and the sets of topolog-
ical independence are interesting class of subshifts of the group (which in the
Ledrappier case forms a matroid [7]).

8.3 Spanning sets

We now define a kind of dual notion to topological independent sets.

Definition 19. Let G be a group, P ⊂ G, and X ⊂ AG closed. Then T ⊂ G
is a P -spanning if there is a function f : X|T → X|P such that for all x ∈ X,
x|P = f(x|T ).

We use the term “spanning” as an analog of “independence”, roughly as the
terms are used in linear algebra and matroid theory. However, the G-spanning
sets are often called expansive or coding sets. In the case G = Zd an expansive
subspace H ⩽ Rd is precisely one such that H + Br ∩ Zd is G-spanning [1]. For
the cellular automata minded it might also be natural to call this the determined
set, as we have deterministic (local) rules for it in the following sense:
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Lemma 33. Let G be a group, and let X ⊂ AG be a closed set. Let T be a P -
spanning set. Then for all g ∈ P there exists a finite set Tg ⋐ T and a function
fg : X|Tg → A such that for all x ∈ X, we have xg = fg(x|Tg ).

Proof. Suppose there is a function f : X|T → X|P such that for all x ∈ X, x|P =
f(x|T ). Note that the graph of this function is just Y = {(x|T , x|P ) | x ∈ X},
which is the continuous image of the compact space X, thus Y is compact. A
function with compact Hausdorff codomain and closed graph is continuous (this
is one of the closed graph theorems from general topology [4]), thus we conclude
that f is continuous.

Now the claim is proved as the Curtis-Hedlund-Lyndon theorem: the clopen
partition {[a]g | a ∈ A} has clopen preimage in f , and inclusion in a clopen set
depends on only finitely many coordinates. ⊓⊔

It is obvious that if T is both P -spanning and Q-spanning, then it is (P ∪Q)-
spanning. It is also clear that the set of sets P for which T is P -spanning is closed
in the product topology of P(G). This gives rise to the following definition.

Definition 20. Let G be a group, T ⊂ G, and X ⊂ AG closed. The spanned
set ψX(T ) of T is the maximal subset P of G such that T is P -spanning.

Lemma 34. Spanned sets form a closure system.

Proof. By definition, we need to show P ⊂ ψX(P ) (extensivity), P ⊂ P ′ =⇒
ψX(P ) ⊂ ψX(P ′) (monotonicity) and ψX(ψX(P )) = ψX(P ) (idempotency). All
of these properties are obvious from the semantics of the operator (and also easy
to verify from the formal definition). ⊓⊔

Sets P such that ψX(P ) = P are called spanning-closed. Our particular
interest is in spanning sets in TEP subshifts. The following is immediate from
the definitions, but we give a detailed proof.

Lemma 35. Let G be a group, let C ⋐ S ⋐ G and let X ⊂ AG closed and
(C, S)-permutive. Let P ⋐ G. Then P is a φ(P )-spanning set. In other words,
the spanned set always contains the filling closure, or in a formula ψX(P ) ⊃ φ(P )
for all P ⊂ G.

Proof. By definition of the filling process, we produce φ(P ) from P by con-
structing a sequence of sets P0 = P, P1, . . . such that Pi+1 is obtained from Pi

by taking gi such that |giS ∩ Pi| = |S| − 1 and |giC ∩ Pi| = |C| − 1, and letting
Pi+1 = Pi ∪ {gici} where gici /∈ Pi.

Now let x ∈ X be arbitrary. We prove that x|φ(P ) is uniquely determined by
x|P by following the chain Pi. First, x|P0

= x|P is trivially determined by x|P .
Now suppose x|Pi

is determined already.
By the definition of (C, S)-permutivity, there is a function fgi : AS\{ci} → A

such that
g−1
i x|S = p =⇒ fg(p|S \ {ci}) = pci .
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Note that g−1
i x|S contains the same data as x|giS , and pci = x|gici . so we are

precisely saying that the pattern x|Pi+1
is uniquely determined by x|giS , in par-

ticular by x|giS\{gici}. The set giS \ {gici} is contained in Pi since because
|giS ∩ Pi| = |S| − 1 and gici /∈ Pi. Therefore, x|Pi+1 is determined by x|Pi . ⊓⊔

Lemma 36. Let G be a group, let C ⋐ S ⋐ G and let X ⊂ AG closed and
(C, S)-permutive. Then (C, S)-solitaire preserves the spanned set.

Proof. Suppose P → Q. We know that solitaire preserves the filling closure,
φ(P ) = φ(Q). Then we calculate

ψX(P ) = ψX(ψX(P )) ⊃ ψX(φ(P )) ⊃ ψX(Q).

The other inclusion is symmetric. ⊓⊔

Lemma 37. Let G be a group, let C ⋐ S ⋐ G and let X ⊂ AG closed and
(C, S)-permutive. Then every spanning-closed set is filling-closed.

Proof. Suppose ψX(P ) = P . Then Lemma 35 we have P ⊂ φ(P ) ⊂ ψX(P ) = P
so φ(P ) = P . ⊓⊔

It is tempting to conjecture that in natural situations, the spanned sets of
a TEP subshift would in fact correspond to filling closures. We will see in Sec-
tion 8.5 that this fails in the very classical Ledrappier subshift (which is the
spacetime subshift of the two-neighbor XOR CA).

There is an obvious connection between the cardinalities of independent and
spanning sets in a general subshift:

Definition 21. Let G be a group, and let X ⊂ AG be a closed set. For P ⋐
G, write rankspan(P ) for the minimal cardinality of a set R ⊂ P such that
ψX(R) ⊃ P . Write rankindep(P ) for the maximal cardinality of a set Q ⊂ P
such that X|Q = AQ.

Proposition 5. Let G be a group, and let X ⊂ AG closed set. Then

rankindep(P ) ⩽ rankspan(P )

Proof. The inequality

rankindep(P ) ⩽ rankspan(P )

holds in general (Without assuming permutivity). Namely, suppose R is such
that ψX(R) ⊃ P . This means that x|R determines x|P for all x ∈ X, so in
particular |X|R| ⩾ |X|P |. If X|Q = AQ and Q ⊂ P , then certainly |X|P | ⩾ |AQ|,
so we must have |X|R| ⩾ |AQ| and taking base-|A| logarithms we get |R| ⩾ |Q|.

This means every spanning set is larger than any independent set, in par-
ticular the minimal cardinality of a spanning set is larger than the maximal
cardinality of and independent set, proving the inequality. ⊓⊔
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Similarly, there is a connection between the filling rank and the spanning
rank.

Proposition 6. Let G be a group, C ⋐ S ⋐ G, and let X ⊂ AG be a (C, S)-
permutive closed set. If P is closed under filling, then rankindep(P ) ⩽ rank(P ),
where rank(P ) is computed with respect to (C, S)-solitaire.

Proof. Let R ⊂ P satisfy φ(R) = P . Then in particular R is a P -spanning set
contained in P . Thus its cardinality is at least as large as that of a minimal
P -spanning set. ⊓⊔

Alternatively, we can say that the filling process is only one way to find
spanning sets, and thus we expect that minimal spanning sets of a pattern can
be smaller than the minimal sets that fill it.

8.4 Bases

Definition 22. Let P ⋐ G and let X ⊂ AG be closed. We say T ⋐ P is a basis
of P (with respect to X) if it is independent and P -spanning.

While the bases of a TEP subshift are of great interest, there is not much we
can say about them in general. Indeed, even in TEP subshifts with the triangle
shape, the family of bases depends on the subshift.

The following related definition is more amenable to analysis through the
solitaire, and we will show that for the triangle shape, it does not depend on the
subshift:

Definition 23. Let P ⋐ G be a filling closed set, and let X ⊂ AG be closed. We
say T ⋐ P is a filling basis of P if it is independent and its filling closure equals
P .

In the conference version [10], we called “filling bases” as “bases”, but we feel
now that it is better to use the generic term for a concept that is not TEP or
solitaire specific.

Now, the following is obvious:

Lemma 38. Any filling basis for a filling closed set is a basis for it.

Lemma 39. Let P be a (filling) basis for F = φ(P ). Then every pattern in its
solitaire orbit is also a (filling) basis for F .

Proof. Independent sets are closed under solitaire, filling closure is preserved
under solitaire, and F -spanning is preserved under solitaire. ⊓⊔

Definition 24. Let N = {0, . . . , n − 1} and let A be an alphabet. A simple k-
permutation of AN is a permutation π that only reads and modifies at most k
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elements of N . More precisely, it is one for which there exists π′ : AM → AM

with M ⊂ N and |M | ⩽ k, such that

π(x)i =

{
xi if i /∈M

π′(x|M )i if i ∈M.

If |A| ⩾ 3, then a simple permutation refers to a simple 2-permutation. If |A| =
2, then it refers to a simple 3-permutation.

If P,Q are bases for the same set, then there is a natural bijection π : X|P →
X|Q, namely the one with graph {(x|P , x|Q) | x ∈ X}.

Lemma 40. Let P →n Q, then for any identifications of P and Q with N =
{0, . . . , |P |−1}, the permutation of AN corresponding to the natural bijection π :
X|P → X|Q can be computed with O(n+ |P | log |P |) many simple permutations.

Proof. We first show that this is true for simple |S|-permutations.
We start by showing that this is true for some identifications between P and

N , and between Q and N . Let P0 = P → P1 → · · · → Pn = Q be a sequence of
solitaire moves.

Start with any identification between P0 and N , and when applying a soli-
taire move, copy the identification for all cells except the ones in the symmetric
difference. When we use this identification of Pi+1 and N , it is clear that the
operation of determining the contents of Pi+1 from those of Pi is a k-simple
permutation.

Finally, for any other identification between Q and N , it suffices to sort this
final result, for which |Q| log |Q| simple 2-permutations suffice.

To show that simple |S|-permutations can be turned into simple permuta-
tions, one can apply Lemma 3.2 of [8]. ⊓⊔

8.5 Bipermutive cellular automata and the Ledrappier subshift

A standard source of TEP subshifts with the triangle shape are bipermutive
cellular automata. Recall that a cellular automaton (here, one-dimensional) is
a function f : AZ → AZ (for finite alphabet A) that is continuous and shift-
commuting.

A cellular automaton always has a local rule F : A{ℓ,...,r} → A such that
f(x)i = F (x|{i+ℓ,...,i+r}) for all x ∈ AZ, i ∈ Z. We say a cellular automaton is
bipermutive if, taking ℓ maximal and r minimal, we have ℓ < r and F satisfies
that F (au) ̸= F (bu) and F (ua) ̸= F (ub) whenever u ∈ Ar−ℓ and a, b ∈ A are
distinct letters. (Here, we identify words and patterns with an interval shape in
the obvious way.)

The following is easy to show, the main observations in the proof being that
bipermutivity implies that a is determined by the pair (u, F (ua)) and by the pair
(u, F (bu)); and that for each u ∈ Ar−ℓ, F (ua) and F (au) can take any values
(since an injective function between finite sets of equal cardinality is surjective).
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Lemma 41. Let f : AZ → AZ be a bipermutive cellular automaton and let
F : A{ℓ,...,r} → A be a local rule for it with ℓ maximal and r minimal. Then

X = {x ∈ AZ2

| x(a,b+1) = F (x(a+ℓ,b), . . . x(a+r,b))}

is a (C, S)-TEP subshift, where

S = ({ℓ, . . . , r} × {0}) ∪ {(0, 1)}

and
C = {(ℓ, 0), (r, 0), (0, 1)}.

Remark 5. The subshift X can be defined for any cellular automaton, and is
called the spacetime subshift. It follows from the theory in [7] that every element
of AZ appears on rows of this subshift in the TEP case. More generally, this
holds for surjective cellular automata. For general cellular automata, the set of
configurations appearing on the rows is precisely the limit set of the cellular
automaton.

The theory developed in Section 5 applies to all bipermutive cellular au-
tomata with r − ℓ = 1, as in these cases (up to shearing) the shape S above is
precisely the triangle, and C = S.

A TEP subshift of special interest, and having the triangle shape, is the
Ledrappier subshift, which is the spacetime subshift of the XOR cellular automa-
ton on alphabet A = {0, 1}, defined by f(x)i = xi ⊕ xi+1 where ⊕ is addition
modulo 2. Equivalently, this is the TEP subshift where the allowed T -patterns
are p ∈ AT such that

∑
p = 0 where addition is again modulo 2.

This example shows that spanned sets can be larger than filled sets.

Proposition 7. There exists a triangular TEP subshift X such that we can
find n, and P ⊂ Tn such that ψX(P ) = Tn but |Tn| − |φ(P )| is arbitrarily large.
Indeed, the Ledrappier subshift is such.

Proof. Next, observe that the restriction of the Ledrappier subshift to the sub-
group 2Z2 of index 4 is 2T -permutive. This can be verified by a direct compu-
tation. (Abstractly, we may deduce it from the fact the subshift is algebraic: we
can see configurations as infinite series in polynomials in two commuting vari-
ables with coefficients in Z2, and T corresponds to an annihilating polynomial p.
Then p(x, y)2 = p(x2, y2) because the field has characteristic 2, see e.g. [Nivat].)

It follows that P = L2n ∪ {(2n+ 1, 0), (1, 2n)} spans T2n+2, since L2n spans
T2n. Since 2Ln ⊂ L2n and 2Ln+1 = 2Ln ∪ {(2n+ 1, 0)}, using the shape 2P we
can span 2Tn+2, in particular we span every second coordinate in the top right
edge of the triangle T2n+2.

In particular, the spanned set contains (0, 2n+ 1). Since P contains (1, 2n),
the spanned set contains (0, 2n), and we conclude that the spanned set contains
the left edge of T2n+2, thus all of T2n+2.

On the other hand, for sufficiently large n, the filling closure of P is T2n ∪
{(2n + 1, 0), (1, 2n)}, as this set is closed under T -filling. The difference in car-
dinality is of course arbitrarily large.
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8.6 Filling bases for triangular TEP subshifts

We continue with TEP subshifts with the triangle shape, and show that the
filling bases of a triangle (with respect to a TEP subshift with the triangle
shape) correspond to the line orbit.

Let XR be a TEP subshift for some R ⊂ ΣT and fix some n ∈ N. Recall
from [7] that the pattern q ∈ ΣTn appears in XR (i.e. is equal to the restriction
of some x ∈ XR to Tn) if and only if it does not explicitly contain a translate of
a pattern in ΣT \R.

Theorem 10. The following are equivalent for P ⊂ Tn, and a TEP subshift
X ⊂ ΣZ2

with the triangle shape:

1. P is a filling basis (with respect to X),
2. P fills (i.e. has filling closure Tn and no excess),
3. P is in the line orbit.

Proof. The equivalence of the last two items is a special case of Corollary 1. We
show that (1) implies (2) and (3) implies (1).

Suppose thus first that P is a filling basis. Then by definition φ(P ) = Tn.
Since the line is a filling basis, it is Tn-spanning, and thus X|Tn

cannot have
cardinality larger than |Σ|n. Thus we cannot have more than n elements in P
since P is independent. Now, we know that any filling set with at most n element
is in the line orbit.

The line is an independent set by Remark 5, and of course fills, thus it is
a filling basis. The property of being a filling basis is preserved under solitaire
(Lemma 39), thus every pattern in the line orbit is a filling basis. ⊓⊔

Note that the first item talks about a specific (but arbitrary) TEP subshift,
since in the definition of the filling basis we require thatX|T = AT for the specific
subshift. The other two items only talk about the abstract solitaire process, i.e.
the set of bases is independent of Σ and R.

The solitaire process allows us to translate patterns on one basis to ones on
another, more space efficiently than the direct method suggests, indeed we give
a polynomial time in-place algorithm for this.

We now specialize Lemma 40 to the triangle case. If P,Q ⊂ Tn are bases, any
pattern p ∈ ΣP uniquely determines a pattern in q ∈ ΣQ in the natural way,
by deducing the unique extension of one pattern to Tn and then restricting to
the domain of the other. If we biject P and Q with N = {1, . . . , n} we obtain a
bijection φ : Σn → Σn.

Recall that when |Σ| ⩾ 3, a simple permutation of Σn is one that ignores all
but two cells. If the cells are 1, 2, this means that for some π̂ ∈ Sym(Σ2) we have
π(a1a2a3a4 · · · an)i = π̂(a1a2)a3a4 · · · an for all a1a2 · · · an ∈ Σn. In general, one
conjugates by a reordering the cells. If |Σ| = 2, a simple permutation may look
at three cells.

Theorem 11. The bijection φ can be computed with O(n3) simple permutations.

Proof. This is a special case of Lemma 40, observing that n log n ⩽ n3. ⊓⊔
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9 Prospects for future work

While we know the diameter of the line orbit (for the triangle shape), and some
bounds on its cardinality, we do not have a good understanding of its shape.

Problem 1. Describe the shape of the line orbit as a graph, with solitaire moves
as edges.

Question 1. What does a random element of the line orbit look like? What is its
expected distance from the line? Can the uniform distribution on the line orbit
be sampled efficiently?

Although we have no particularly strong evidence one way or another, we
conjecture a nice formula for the size of the line orbit:

Conjecture 3. There are constants 2
e ⩽ c ⩽ e and d such that |γ(Ln)| = Θ

((
n
c

)n+d
)
.

Question 2. For which groups G, and subsets C ⋐ S ⋐ G, do we have a nice
solitaire theory?

Question 3. Does G = Z2 (or more generally Zd) have nice solitaire theory for
all C = S?

An interesting class of shapes are the simplices {v⃗ ≥ 0 |
∑
v⃗i ≤ 1} in Zd. We

do not even know whether G = Z3 has a nice solitaire theory for the pyramid
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Question 4. Which groups G have the finite filling (resp. solitaire) property?

We introduced in Section 4 the notion of an excess set. What can be said
about the family of excess sets as a set system? How can we determine the
maximum cardinality of an excess set? We do not know the answers even for the
triangle case.

We also mention the following problem:

Problem 2. Describe the bases of triangles for the Ledrappier subshift, in the
sense of Section 8.4. Can they be described by a variant of the solitaire process?

References

1. Boyle, M., Lind, D.: Expansive subdynamics. Trans. Amer. Math. Soc. 349(1),
55–102 (1997). https://doi.org/10.1090/S0002-9947-97-01634-6

2. Franks, J., Kra, B.: Polygonal Z2-subshifts. Proc. Lond. Math. Soc. (3) 121(2),
252–286 (2020). https://doi.org/10.1112/plms.12313

3. Hanna, P.D.: The On-Line Encyclopedia of Integer Sequences, published electron-
ically at https://oeis.org/A101481, 2022, Sequence A101481

4. Kelley, J.L.: General topology. Courier Dover Publications (2017)
5. Kirchner, G.: The On-Line Encyclopedia of Integer Sequences, published electron-

ically at http://oeis.org/A295928, 2022, Sequence A295928



Solitaire of Independence 45

6. Salo, V.: Soliatire (2020), https://villesalo.com/notes/solitaire.html [Accessed:
(2024-4-18)]

7. Salo, V.: Cutting corners. J. Comput. System Sci. 128, 35–70 (2022).
https://doi.org/10.1016/j.jcss.2022.03.001

8. Salo, V.: Universal groups of cellular automata. In: Colloquium Mathematicum.
vol. 169, pp. 39–77. Instytut Matematyczny Polskiej Akademii Nauk (2022)

9. Salo, V., Schabanel, J.: Triangle solitaire solver.
https://github.com/vosalo/trianglesolitaire (2022)

10. Salo, V., Schabanel, J.: Triangle solitaire. In: International Workshop on Cellular
Automata and Discrete Complex Systems. pp. 123–136. Springer (2023)


