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Abstract

Conway’s Game of Life is a two-dimensional cellular automaton. As a dy-
namical system, it is well-known to be computationally universal, i.e. capable
of simulating an arbitrary Turing machine. We show that in a sense taking
a single backwards step of the Game of Life is a computationally universal
process, by constructing patterns whose preimage computation encodes an ar-
bitrary circuit-satisfaction problem, or, equivalently, any tiling problem. As a
corollary, we obtain for example that the set of orphans is coNP-complete, ex-
hibit a 6210 × 37800-periodic configuration whose preimage is nonempty but
contains no periodic configurations, and prove that the existence of a preim-
age for a periodic point is undecidable. Our constructions were obtained by a
combination of computer searches and manual design.
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1. Introduction

Conway’s Game of Life, designed by John Conway and popularized by Mar-
tin Gardner [9], is a two-dimensional cellular automaton. Specifically, it is the

function g : {0, 1}Z2 → {0, 1}Z2

defined by

g(x)v⃗ =


1, if xv⃗ = 0 and

∑
n⃗∈[−1,1]2 xv⃗+n⃗ = 3,

1, if xv⃗ = 1 and
∑
n⃗∈[−1,1]2 xv⃗+n⃗ ∈ {3, 4},

0, otherwise

(1)

where x ∈ {0, 1}Z2

and v⃗ ∈ Z2. If configurations x ∈ {0, 1}Z2

are interpreted as
infinite grids of live/black/occupied cells (denoted by 1) and dead/white/empty
cells (denoted by 0), then the rule can be interpreted as saying that a new live

∗Corresponding author
Email addresses: vosalo@utu.fi (Ville Salo), iatorm@utu.fi (Ilkka Törmä)
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cell is born at a dead cell with exactly three live neighbors, and a live cell will
stay alive if and only if it has two or three live neighbors.

The Game of Life, being a function from a topological (specifically, Cantor)
space to itself, can be interpreted as a dynamical system. As the space is very
combinatorial, it can also naturally be interpreted as a computational device,
and these two points of view are strongly intertwined. Starting from a finite-
support configuration (one with finitely many live cells) it can simulate the
behavior of a Turing machine on a finite but unbounded configuration [20].2

The Game of Life is also intrinsically universal, i.e. its subsystems can simulate
any cellular automaton [6]. Thus, it is natural to say that the dynamics of the
Game of Life is computationally universal. See [14, 16] for more information
on building patterns in the Game of Life with interesting dynamics, which is a
rather vast field of science on its own.

In addition to its dynamics, the Game of Life can also thought of as a block
map, i.e. a continuous shift-commuting map g : X → Y between two subshifts
X = {0, 1}Z2

and Y = {0, 1}Z2

.3 Since g is a cellular automaton, these subshifts
are of course identical, but we can study them as separate objects with different
roles. In this point of view, our attention moves from iteration to “one-step”
problems. For example, we may ask about the image of the Game of Life
g({0, 1}Z2

) (in symbolic dynamics jargon, this is a particular sofic shift), about
its fixed points (in symbolic dynamics jargon, this is a particular subshift of

finite type, or SFT ), or about the preimage g−1(0Z
2

) of the completely empty
configuration (this is another SFT).

Previous results in this direction are that the maximal density of 1s in the
subshift of fixed points is exactly 1/2 [7], that g−1(0Z

2

) has dense semilinear
points but does not have dense periodic points [24], and that there exist finite
patterns P such that each pattern in g−1(P ) also contains an occurrence of P
(which has various implications for the long-term dynamics of g) [27]. There
are also many open problems about these subshifts, for example, the Still Life
Finitization Problem asks whether the subshift of fixed points has dense finite-
support configurations.

One may also consider the study of temporally periodic points as being about
one-step dynamics (seeing higher powers of the Game of Life as block maps).
An interesting problem is omniperiodicity, or whether the Game of Life admits
finite-support configurations of all periods. It was recently solved in the positive
[19], ending a decades-long collaborative project of the Game of Life research
community. It remains open what other properties the periodic-point subshifts
have; for example, like with the fixed-point subshift, it is natural to ask whether
finite-support points are dense.

In this paper, we prove that the Game of Life is “universal as a block map”
(in a rather technical sense discussed in Section 7). In particular, we can ar-

2Adam Goucher obtains a simultaneous proof of both claims by proving intrinsic univer-
sality with a quiescent state simulated by 0-blocks [14, Chapter 12].

3In symbolic dynamics, a subshift is a certain kind of set of infinite configurations.
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gue that producing a preimage of a configuration is a computationally universal
process, roughly equivalent to finding a satisfying assignment to a Boolean cir-
cuit. We construct “gadgets”, square patterns of 0s and 1s that represent logical
gates, such that the preimages of circuits built from these gadgets are in corre-
spondence with the satisfying assignments of the corresponding abstract circuit.
For example, we show below a “wire-crossing” gadget, which allows two signals
to pass through it without interacting, and a corresponding preimage where
signals cross:

g7→

On the right hand side is the gadget. The black lines of width 2 are called
wires. On the left hand side is a preimage of the gadget under g. The repeated
length-4 segments form one particular preimage of such a wire. This repeating
pattern has the useful property that it propagates through a wire: if we have a
preimage of a wire, one segment of which contains this pattern, then the entire
preimage must consist of repetitions of the pattern with period 3. Note that the
word “propagate” does not imply a temporal relation, but a constraint between
different parts of a single preimage.

The 3-periodic preimage of a wire can be in one of three phases, and we
choose two of them – called its operating phases – to represent a value of 0 or 1
carried by the wire. In the above gadget, the signals of the north and west wires
are correlated on the preimage, as are those of the east and west wires, as long
as all four are in an operating phase. We present gadgets for tasks like turning
wires, inverting the signal they carry, and logical operations, as well as more
technical gadgets that introduce the signal into wires and change the phase of
the signal traveling on them.

Our general construction allows us to turn the problem of satisfying a cir-
cuit into a preimage computation problem. It follows that given a finite-support
configuration, it is NP-complete whether this configuration admits a preimage
under the Game of Life. The problem is already known to be in NP [24], and
we prove NP-hardness in Theorem 5. Also, given a finite pattern, it is NP-
complete whether it appears in the image subshift of the Game of life, equiva-
lently whether it is an orphan is co-NP-complete (Theorem 6). We note that for
a general fixed cellular automaton, the former problem may be undecidable (by
an easy reduction from the halting problem: the finite-support configuration
encodes an input to a fixed universal Turing machine, and the preimage must
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contain an infinite computation, which the automaton erases in a single step),
while the latter is always in NP.

We can also simulate tilings of the two-dimensional plane by drawing circuits
that check the color constraints of a set of Wang tiles. An immediate, but
perhaps striking, corollary is that there exists a periodic configuration that has
a preimage, but has no periodic preimage (Theorem 2). Using a small aperiodic
tile set, such as the 11-tile Jeandel-Rao set [13], we can make the periods small
enough (6210 × 37800) to fit comfortably in computer memory. In the code
repository [25], the reader can find an explicit presentation compatible with the
Golly simulator [21]; screenshots are shown in Figure 1.

Figure 1: On the left, the fundamental domain (a 6210 × 37800 rectangle) of a periodic
configuration whose preimages factor onto scaled tilings of the Jeandel-Rao tile set (thus are
aperiodic). On the right, a subpattern roughly corresponding to a single tile type.

More strongly, we prove that there exists a periodic configuration that has
a preimage, but has no recursive (= computable) preimage (Theorem 10). We
can also guarantee that every preimage of this periodic configuration has Ω(n)
Kolmogorov complexity in every n×n-pattern (Theorem 11). On the decidabil-
ity side, we show that given a periodic configuration, it is undecidable whether
it admits a preimage (Theorem 8), and given a periodic configuration that has
a preimage, it is undecidable whether it has a periodic preimage (Theorem 9).
We emphasize that no real work is needed to establish these corollaries – we
simply transport well-known results from tiling theory into the Game of Life
using our circuit technology.

Most single-step properties of two-dimensional cellular automata, such as
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injectivity or reversibility, are undecidable, as are most dynamical properties of
CA in any number of dimensions [15, 29]. By contrast, for one-dimensional CA
single-step problems are much easier than for higher-dimensional CA, as they
can be modeled by finite state machines [28]. In particular, the orphans of a one-
dimensional CA form a regular language that can be explicitly computed from
the local rule [30]. Even the dynamical properties of one- and higher-dimensional
CA tend to be qualitatively different, even though both are undecidable [23].

The technical framework where we prove most of our results is adapted from
the idea of intrinsic universality in cellular automata theory [18, 3, 4]. The basic
idea is that a universal block map ϕ can simulate any other block map ψ, when
symbols of (the codomain of) ψ are replaced by suitable rectangular patterns (in
the codomain) of ϕ. We in fact introduce three notions of universality for block
maps, namely weak, semiweak and strong universality. We develop a basic
theory of these notions, and show that a certain block map taking satisfied
logical circuits to their underlying circuits (all encoded as subshifts of finite
type) is strongly universal.

We prove that the Game of Life semiweakly simulates the circuit system, and
conclude that it is semiweakly universal (Theorem 4). This suffices to prove all
the results above. Indeed, all but Theorem 9 follow from weak universality.

All of our gadgets were found using SAT-solvers to find preimages (and prove
the lack of particular types of preimages) for patterns, and then looking for suit-
able patterns using various types of search methods, in some cases accompanied
by a bit of manual experimentation. Our paper is by no means the first time
“NP-completeness gadgets” are found by computer [8, 22].4

The results are conditional to SAT-solvers’ claims about the gadgets being
correct. We have not been able to verify any but the most obvious claims
with straightforward search algorithms. Information on the implementation
and testing can be found in Section 9.

2. Definitions

Let A be a finite set, called a state set or alphabet. A two-dimensional
pattern over A consists of a set D ⊆ Z2 and a mapping P : D → A. We usually
refer to P as the pattern and D = D(P ) as the domain of P . The symbol at
position v⃗ ∈ D in P is denoted by Pv⃗. A finite pattern is a pattern with a finite
domain, and a configuration is a pattern whose domain is Z2. Configurations
are denoted by small letters x, y, z, . . ., and the set AZ2

of all configurations is
the two-dimensional full shift over A. If A = {0, 1} is the binary alphabet, the
support of a configuration x is the set supp(x) = {v⃗ ∈ Z2 | xv⃗ = 1}. We also

use the obvious analog for finite patterns. The shift maps σv⃗ : AZ2 → AZ2

for
v⃗ ∈ Z2 are defined by σv⃗(x)w⃗ = xw⃗+v⃗. They can also be applied to patterns:
σv⃗(P ) is the pattern Q ∈ AD(P )−v⃗ with Qw⃗ = Pw⃗+v⃗ for all w⃗ ∈ D(P ) − v⃗. A

4See references in [10] for more examples.
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pattern P occurs in a configuration x, denoted by P < x, if there exists v⃗ ∈ Z2

with σv⃗(x)|D(P ) = P .

Every set F of finite patterns over A defines a subshift X ⊂ AZ2

as the set
of configurations where no element of F occurs. Symbolically,

X = {x ∈ AZ2

| ∀P ∈ F : P ̸< x}.

If F is finite, then X is a shift of finite type (SFT).
One way to define two-dimensional SFTs is by Wang tile sets. A Wang tile

over a finite set C of edge colors is a 4-tuple t = (tE , tN , tW , tS) ∈ C4. A set

T ⊆ C4 of Wang tiles defines an SFT XT ⊆ TZ2

using the forbidden patterns

t1t2 and
t3

t4

for all t1, t2, t3, t4 ∈ T with (t1)E ̸= (t2)W and (t3)S ̸= (t4)N , respectively. A
Wang tile can be visualized as a unit square whose east, north, west and south
edges are labeled with the four colors in this order. A configuration of Wang
tiles is in XT if the edge colors of all adjacent tiles match.

A cellular automaton is a function f : AZ2 → AZ2

that admits a finite neigh-
borhood N ⊂ Z2 and a local rule F : AN → A such that f(x)v⃗ = F (σv⃗(x)|N )

holds for all x ∈ AZ2

and v⃗ ∈ Z2. Once the neighborhood N and local rule F
of a cellular automaton f have been fixed, we define the preimage of a pattern
P over A as

f−1(P ) = {Q ∈ AD(P )+N | Q < X,∀v⃗ ∈ D(P ) : F (σv⃗(Q)|N ) = Pv⃗}.

Note that the common domain of the patterns in f−1(P ) is usually larger than
that of P . We sometimes refer to individual patterns in f−1(P ) as preimages
of P .

The Game of Life g : {0, 1}Z2 → {0, 1}Z2

is the cellular automaton defined
in Equation (1), and it admits the neighborhood N = [−1, 1]2. We will not use
the letter g for any other purpose.

Let A and B be alphabets and R = [0, w − 1] × [0, h − 1] a rectangle. A
substitution of shape R is a mapping τ : A → BR. It can be extended to a
mapping τ : AZ2 → BZ2

by τ(x)v⃗ = τ(σw⃗(x)⃗0)u⃗, where u⃗ ∈ R and w⃗ ∈ wZ×hZ
are the unique vectors that satisfy u⃗+ w⃗ = v⃗. Intuitively, we apply the “local”
map τ to every symbol of x, obtain a configuration of R-shaped patterns over
B, and then stitch them together to obtain a configuration over B.

For our computational complexity results we need to fix encodings of various
objects into binary words. Each alphabet A is assumed to come with a binary
encoding b : A → {0, 1}+ that is unambiguous and injective as a morphism,
in the sense that the mapping from words a1 · · · an ∈ A∗ of arbitrarily length
to concatenations b(a1) · · · b(an) is injective. For rectangles of the form R =
[−m,m] × [−n, n], we encode patterns P ∈ AR as 0m10n1u, where u is the
concatenation of b(Pv⃗) for v⃗ ∈ R in lexicographical order. A finite-support

configuration x ∈ {0, 1}Z2

is encoded identically to the pattern x|R, where R ⊂
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Z2 is the smallest rectangle of the above form containing supp(x). For a fixed
universal Turing machine U , the Kolmogorov complexity of a word w ∈ {0, 1}∗ is
the length of the shortest word v ∈ {0, 1}∗ such that U computes w when given
v as input. The Kolmogorov complexity of a rectangular pattern P is defined
as the Kolmogorov complexity of the concatenation of b(Pv⃗) for v⃗ ∈ D(P ) in
lexicographical order. Note that the shape and position of the pattern are not
encoded.

The following definitions are needed only for Section 7 and the proofs of
Section 8, which can be skipped on first reading. Let X ⊆ AZ2

and Y ⊆ BZ2

be subshifts. A block map is a function f : X → Y that admits a finite neigh-
borhood N ⊂ Z2 and a local rule F : AN → B such that f(x)v⃗ = F (σv⃗(x)|N )
holds for all x ∈ X and v⃗ ∈ Z2. The image f(X) of a block map is always a
subshift. Note that a cellular automaton is just a block map from a full shift
to itself. A section of a block map f : X → Y is a block map h : Y → X such
that f(h(y)) = y for all y ∈ Y . We say a block map splits or is split if it admits
a section. If a block map f : X → Y is bijective, it is called a (topological)
conjugacy, and then X and Y are conjugate subshifts. The inverse function of
a conjugacy is always a block map.

3. Wires

In our constructions we use wires, which are a type of self-propagating pat-
tern, namely a pattern P associated to a vector p⃗ ̸= 0⃗ with the property that
whenever the g-preimage x of a suitable configuration y contains an occurrence
of P at some coordinate v⃗, then it contains another occurrence at v⃗+ p⃗. In our
case, p⃗ ∈ {(0,±3), (±3, 0)}, and y is suitable if it resembles the all-1 configura-
tion near the two occurrences of P . If y is suitable near v⃗ + np⃗ for n = 2, 3, . . .,
then the pattern must occur in x at these coordinates as well. Again we note
that the notion of propagation is not temporal, since we are only dealing with
the set of preimages of a single configuration or pattern, but it is directional in
the sense that an occurrence of a pattern at some position in a preimage implies
another occurrence at a certain nearby position.

A vertical wire is a pattern of shape 2 × n consisting of 1-symbols, and a
horizontal wire is a pattern of shape n× 2 consisting of 1-symbols. Information
is transmitted along a wire in the form of a 3-periodic pattern. The vertical
wire signals are the three 4× 2 patterns

W0 =
1 1 1 1
0 0 0 0

W1 =
0 0 0 0
1 1 1 1

W2 =
0 0 0 0
0 0 0 0

Rotating them by 90 degrees counterclockwise results in the horizontal wire
signals.

Consider a configuration x ∈ {0, 1}Z2

and y = g(x). If x|[0,3]×[0,1] =Wi and
y|[1,2]2 = 1 1

1 1 , then a short case analysis reveals that x|[0,3]×[1,2] = Wi+1, where
the index is taken modulo 3. For example, in the case i = 0 both x(1,1) and x(2,1)
must have three 1-symbols in their neighborhood, which implies x|[0,3]×{2} =
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1111. (One may also check that already a single 1111-row in the preimage will
force this periodic structure on the preimage.) Thus eachWi is self-propagating
along a vertical wire in both directions p⃗ = (0,±3), and the analogous claim
holds for the horizontal signals and wires. Note that this property holds no
matter what the 1s are surrounded with. Typically we will surround the wires
with dead cells, and use a line of live cells of thickness two as the wire.

We say that a preimage of a wire is charged if it contains a wire signal.
In Figure 2 we show a horizontal wire and its three charged preimages, plus
one uncharged preimage. We only show the part of the charged preimages
that is forced by the presence of a horizontal wire signal in any part of the
wire. Uncharged preimages of wires will not play a role in the remainder of this
article, apart from being something we actively prevent from existing.

Figure 2: A horizontal wire and its three charged preimages, plus one uncharged preimage.

We use the phase of the signal to transmit information within the preimages
of a fixed image y. Since each wire has three charged preimages, we can choose
two of them – called its operating phases – to represent the values 0 and 1,
and leave the third one unused. We use white dots in figures to represent the
unused phase, marking those cells whose preimage should be 0 regardless of the
bit carried by the wire. In Figure 2, the unused phase, according to how we
have marked the wire, is the rightmost one.

The choice of the unused phase depends on the wire, as different gadgets
require different conventions. As for the bits, in a vertical wire we will always
interpret a charged wire as containing the logical value 0 (resp. 1) if, out of the
two possible adjacent positions where the 1s could occur, they occur on the north
(resp. south) side, i.e. in the preimage of the unmarked cells we have a copy of
W0 (resp. W1). For horizontal wires we use the same convention but rotated
90 degrees counterclockwise, i.e. if the 1s are on the west half of the unmarked
bits, we carry a logical 0-bit. In Figure 2, the leftmost charged preimage thus
encodes a 1, and the middle one encodes a 0.

4. The basic gadgets

In this section, we introduce the so-called basic gadgets which “manipulate”
signals traversing a wire. Again, a wire is charged if (in a particular preimage
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or family of preimages) its preimage consists of the Wi-patterns. As mentioned
in the introduction, we verify such properties of our gadgets by SAT solvers,
and we have not checked (all of) them through other means; thus, this section
simply describes the properties of the gadgets, and does not prove them. See
Section 9 for details on how we found and verified the gadgets.

Formally, a rectangle-shaped pattern can be thought of as defining a rela-
tion on the cells on the boundary of its preimages. All of our basic gadgets
are rectangular patterns satisfying the following common properties, which will
allow us to easily combine them into computational gadgets. Some cells on the
boundary of the gadget are part of wires pointing out of the domain. Each of
the four borders will have at most one wire. The gadget defines some relation
on the possible phases of signals on the wires, by admitting some combinations
in a preimage and forbidding others. Each gadget carries the information about
the operating phases of each of its boundary wires. Each realizable combina-
tion of operating phases on the boundary wires can also be realized with zeroes
everywhere else on the boundary.

The last item is a key property, as it allows us to worry only about the
wires: the relations on the wires already force whatever computation we want
to happen, and for any such computation, we know there is a legal preimage,
because we can simply write zeroes everywhere on the boundaries and stitch
the gadgets together along them.

We now define a notation for the precise behavior of our gadgets. The first
property we are interested in is its charging behavior : which of the boundary
wires are required to be charged in an operating phase for the gadget to function
properly, and which ones are charged by the gadget itself? We denote this
property by X ⊢ Y , where X lists those directions among {E,S,W,N} that
should be charged in an operating phase from the outside, and Y lists those
that are automatically charged in an operating phase assuming the wires in X
are. We might give several lists for X, with the interpretation that any one
choice among them will charge all the wires in Y . For example, the charging
behavior EW,S ⊢ EN means that in any particular preimage, if the east and
west wires are charged, or the south wire is charged, then the east and north
wires will also be charged (in their respective operating phases).

The second property is the relation between the binary values carried by
the boundary wires: which combinations of values are realizable in a preimage?
We denote this property by simply listing all the realizable combinations as
binary words. For example, the relation EWN ∈ {000, 001, 010, 100} means
that there are wires on the east, west and north sides of the gadget, and as
long as all three are charged in their operating phases, at most one of them can
carry a 1-signal. We remind the reader that by construction of the gadgets,
each realizable combination will also be realizable by a preimage with 0s on the
border except near the wires. The charging behavior and relation of a gadget
together constitute its specs.

Example 1: Consider a hypothetical gadget with the specs

W ⊢ NE;WNE ∈ {001, 010, 100}.
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This means that the gadget has wires on the west, north and east sides. If the
west wire is charged, meaning that a preimage contains a signal in an operating
phase, then the two others will be charged as well (in that preimage). In any
such preimage, exactly one of the wires is in phase 1, and all such combinations
can be realized in preimages where the rest of the boundary consists of 0s. #

We note that the specs refer to a particular orientation of the gate. When a
gate is rotated 90 degrees counterclockwise, of course the permutation (EN W S)
is applied to all symbols appearing in the specification. In addition, when a wire
turns counterclockwise from west to south or east to north, one must flip the bit
on that wire in every tuple in the relation. Thus, in the relation, ENWS = abcd
turns into ENWS = dābc̄, where 0̄ = 1, 1̄ = 0.

This convention for the meaning of 0 and 1 in a wire makes it easy to reason
about large circuits, as we need not keep track of an orientation for individual
wires. However, when reasoning about individual gadgets (and especially when
rotating them) an easier interpretation is that of orientations. A horizontal wire
coming into a gadget from the west (resp. east) boundary is said to have near
charge if its charge carries the bit 1 (resp. 0). Similarly, a vertical wire coming
into a gadget from the north (resp. south) boundary is said to have near charge
if its charge carries the bit 1 (resp. 0). Intuitively, looking at the two operating
phases of the signal between any two marked cells, the one closer to the center of
the gadget is the near charge. The other operating phase is called a far charge.
This determines the affinity of the charge relative to the gadget. See Figure 3
for an illustration.

Gadget 1 Gadget 2

1-bit: near charge far charge

0-bit: far charge near charge

Figure 3: The affinity of a preimage of a charged wire near the boundary of a gadget.

If gadgets are thought of as manipulating the affinity of charges, the specs
stay the same when we rotate them. Of course the conversion between the two
notations is straightforward. For the reader’s comfort we include in all specs
the affinity version of the relation, as a subset of {N,F}k for a suitable power
k, with N and F denoting respectively the near and far charges. For example,
the gadget of Example 1 has the relation WNE ∈ {FFF,FNN,NFN}.
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4.1. Charging a wire: the charger-splitter combo

A typical preimage of a wire is messy, and does not propagate determinis-
tically, so to get computation going the first thing we need to do is charge our
wires. In other words, we want a gadget such that in every preimage, the wire
on the boundary is charged, and there is a preimage where the wire is in this
charged state and everything else on the boundary is zero. The charger gadget,
shown in Figure 4, has such a behavior.

Figure 4: The charger gadget where one output is near and one is far. Specs: ⊢ N ;N ∈
{0, 1}/{N,F}. The gadget is inside the black rectangle, and we show the beginning of a wire
on top.

In words, the precise property of the gadget is the following. The 4 × 2
rectangle at the top boundary, whose bottom half is inside the domain and
which has the two black top cells of the wire in its middle (circled in Figure 4),
is forced to contain the pattern W0 or W1. For each of the two, the gadget has
a preimage where the boundary is otherwise empty. Intuitively, the behavior
of the charger gadget is quite simple: it charges the top wire in an arbitrary
operating phase.

A charged wire that starts from a charger is somewhat useless on its own. In
order to transmit information, we need charged wires with two ends. To achieve
this, we combine the charger with the splitter, depicted in Figure 5, which splits
a signal in two directions. In fact, we will only use the charger in combination
with a splitter.

Note that there is a wire going straight through the splitter, so the north-
south behavior is clear, and the wire on the east copies this information. In the
shown orientation, the gadget has the side effect that the signal moving to the
east is inverted. In terms of affinity, we copy affinity from the side where a bar
of four black cells – the handle bar – sticks out of the wire (on top in the shown
orientation).

Combining the charger and splitter, we obtain the charged turn gadgets
shown in Figure 6. The intuitive behavior of these gadgets is that the input and
output wires are charged and their signals are synchronized. Depending on the
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handle bar

Figure 5: The splitter. Specs: N,S ⊢ ENS;ENS ∈ {100, 011}/{FFN,NNF}.

orientation, the signal may be flipped. In terms of affinity, if the signal meets
the handle bar, affinity is kept.

4.2. Shifting and inverting a signal

The charged turn allows us to construct charged wires and turn them. How-
ever, for now the wires are cumbersome, if not impossible, to work with: our
gadgets do not align nicely modulo three (the period of the signals), and we can-
not yet shift the phase of the signal. Thus, we introduce a gadget that allows
the free manipulation of the phase, namely the inverter, shown in Figure 7.

As a mnemonic, the reader may find it useful to visualize the contents of the
bottom two inhabited rows as the “feet” of the gadget. In terms of these feet,
the inverter kicks the signal with its smaller foot, or its kicker (in the figure, the
westmost one) to invert it. As a side effect it increments the phase of the signal
by one, i.e. the horizontal distance between a marked cell on the west side and
one on the east side is −1 mod 3. The inverter gate propagates a charge in the
direction of the kick, which in the figure is from east to west.

Since 2 and 3 are coprime, the inverter on its own can be used to invert and
phase shift the signal. Namely, we can first use an inverter to change the bit
carried by a wire if desired, and then two copies of the inverter to change the
phase by 1 mod 3 or four copies to change it by −1 mod 3. It seems likely that
gadgets of similar size exist for all phase-signal transformations, but we have
not been able to find any.

4.3. Wire crossing

A wire-crossing gadget is given in Figure 8. Note that the gadget performs
no charging, and that as a side-effect, phases are inverted (i.e. affinity is copied).
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Figure 6: The charged turn gadgets. Specs: ⊢ ES for both, ES ∈ {01, 10}/{NF,FN} for the
first, ES ∈ {00, 11}/{NN,FF} for the second.

kicker

Figure 7: The inverter. Specs: E ⊢ W ;EW ∈ {01, 10}/{NN,FF}.
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Figure 8: The wire-crossing gadget. Specs: no charging, ENWS ∈
{0011, 0110, 1001, 1100}/{NFNF,NNNN,FFFF,FNFN}.

4.4. A universal logical gate

Now that we can freely connect wires and invert their values, all we need
is a gate that, together with NOT, is universal. One such gate is specified in
Figure 9. In terms of affinity, the top output is far if and only if both inputs are
far. In global terms, in the shown orientation, seeing the west and east signal
phases as the input, and north as the output, this is the N =W ∨¬E gate; the
north signal is 0 if and only if the west signal is 0 and the east signal is 1. By
composing with inverters, one can easily produce any standard gate such as an
AND gate or an OR gate in any orientation.

4.5. Constant charger

The above set of gadgets is already universal, but we nevertheless present
also a gadget that introduces a fixed charge on a wire. It is called the enforcer
and is depicted in Figure 10. As the enforcer sends a fixed charge, it does not
determine two phases, so we can arbitrarily choose whether the signal it carries
is 0 or 1 by aligning it appropriately. We choose to interpret the signal as being
sent in the near phase. In the figure we use the usual white dot to mark the
cells where the preimage always contains zero, i.e. the unused phase, and the
white cross denotes the other unused phase coming from the fact the F bit is
never emitted.

14



Figure 9: A gadget that performs the logical operation N = W ∨ ¬E. Specs: no charging,
ENW ∈ {111, 011, 100, 010}/{FNF,NNN,FFF,NNF}.

Figure 10: The enforcer. Specs: ⊢ W ;W ∈ {1}/{N}.
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5. Composite gadgets and abstract circuits

Our composite gadgets will correspond to the following set of gate tiles:

T = { , , , , , , , , , , , }.

Before describing the gadgets, we give these symbols abstract component se-
mantics, which mostly correspond to their usual meanings as used in digital
logic. A well-formed circuit is any element of the SFT XT ⊂ TZ2

where in
adjacent tiles all wires that reach the boundary of the tile must continue in the
neighboring tile. If T is interpreted as a set of Wang tiles over the color set
C = {no wire,wire} (ignoring the fact that some combinations of colors corre-
spond to several distinct tiles), then XT is precisely the SFT defined by them
as Wang tiles.

A circuit is satisfiable if it is possible to pick a signal s ∈ {0, 1} for each of
the wires in each tile reaching its boundary, so that the following hold:

• In the tiles , , , , , the signals at both wires are the same.

• In , the signals in the two wires are distinct.

• In , the signal in the unique wire is 1.

• In , the signal in all the wires is the same.

• In , the north and south signals are equal, and the east and west signals
are equal.

• In , the east signal is 1 if and only if at least one of the north and south
signals is 1. (This is the logical OR operation.)

Write ZT ⊂ XT × (({0, 1,⊥})4)Z2

for the subshift encoding the satisfying as-
signments (where the {0, 1,⊥})4-element in each cell codes the values of signals,

and ⊥ is used iff there is no wire), and f : ZT → TZ2

the natural projection.
(For technical reasons, which will become clear later, the codomain is be taken
to be a full shift.) We denote f(ZT ) = YT ⊂ XT . The circuit system is the

triple (f, ZT , T
Z2

).
Note that we are “missing” some obvious gates, like an AND gate and various

orientations of gates, which would be useful for many engineering purposes, but
they can be “simulated” easily (even in a precise sense as discussed in Section 7).

We now explain what our composite gadgets should do, and the correspon-
dence with gate tiles. To each gate tile, we will associate a 450 × 450 pattern
with four fixed positions on the east, north, west and south boundaries, called
its connector positions. The east and west connector positions have the same
y-coordinate, and the north and south connector positions have the same x-
coordinate, so that the connector positions of adjacent gate tiles will match. A
wire enters the gadget from a connector position if and only if the corresponding
gate tile has an outgoing wire on that side. Thus the SFT rule of XT translates
into “wires should continue across the borders of adjacent composite gadgets”.
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The rest of the boundary of each composite gadget is all zero. In every
g-preimage of a composite gadget, all the boundary wires are charged in one
of two phases. The two phases used are the ones where the 1s are on either
side of the boundary (the phase where we have zeroes around the boundary
never extends to a preimage of a gadget). We refer to the choice of which two
phases are used for bits as the phase alignment, and the aforementioned choice
of positioning of the used phases is referred to as the neutral alignment.

Interpreting the signal values as in the previous section, i.e. a representing
a 1-signal by having the 1s on the east and south sides of the boundary, the
allowed combinations for the signals should be precisely the ones described above
for the abstract semantics, and furthermore for any such choice the rest of the
boundary of each composite gadget should be fillable with zeroes.

We construct such gadgets in two parts. First, we give 90 × 90 blocks that
simply connect the corresponding gadget from Section 4 to a consistent po-
sition on each border (we position our wire boundaries at the 29th and 30th
column/row), in some cases using some inverters. We cannot simply put the
resulting 90× 90 patterns together, since the wires are not necessarily charged,
and the phase alignments of neighboring patterns may not match.

To solve these issues, we introduce horizontal (resp. vertical) “charged wire
gadgets” of shape 180 × 90 (resp. 90 × 180). These gadgets should charge the
wires, and we construct one for each of the nine possible alignment changes. We
can then position our basic gadgets in the middle 90× 90 squares of 450× 450
squares, and use the remainder of the space to put charged wire gadgets on the
appropriate sides, changing all phase alignments to the neutral one.

Figure 11 shows the 450 × 450 gadget corresponding to the OR gate. The
central 90×90 part is constructed from the logical cate of Section 4.4 by adding
inverters to two of its wires, so that its semantics match the standard OR gate.
Each of the three charged wire gadgets consists of four charged turns that charge
the wire and some number of inverters that correct its phase to the neutral one.

We provide Golly-compatible patterns corresponding to this description in
the repository [25]. If one has memorized the specs of the basic gadgets given
in Section 4, it is a reasonably simple eyeballing exercise to verify that they
indeed correctly implement the semantics of the gate tiles. In addition to having
performed this eyeballing exercise several times ourselves, we have checked the
semantics of the composite gadgets (but not the 450 × 450 squares) by a SAT
solver. A Python script that performs this check for all the gadgets of Section 4,
the corresponding 90× 90 squares, and the 180× 90 charged wires, can also be
found in [25]; its running time is only a few seconds. The SAT instances that
verify the gadgets are not difficult to generate programmatically, so a skeptical
reader can also write their own verification script.

Once we have the gadgets, it is easy to see that for any satisfiable circuit, the
corresponding tiling by composite gadgets has a preimage: satisfy the abstract
circuit, copy the signal values (using the interpretation of values which is consis-
tent among neighboring composite gadgets), and fill the rest of the boundaries
with zeroes. On the other hand, if the composite gadget has a preimage, then
already the values on the wires prove the satisfiability of the circuit. Thus, we
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Figure 11: A 450× 450 composite gadget for the OR gate.

obtain the following theorem – which is, again, valid assuming the verification
script is correct.

Theorem 1. There exists a substitution τ : T → {0, 1}450×450 such that for
x ∈ XT , τ(x) has a g-preimage if and only if x ∈ YT .

6. A concrete example: the Jeandel-Rao tile set

Before delving deeper into universality, we show how to simulate an arbitrary
Wang tile set with at most four edge colors in a direct fashion, without explicitly
referring to universality. We also optimize the size of the simulation slightly,
from 450×450 to 270×270, by not resetting to neutral phase alignment between
patterns, but simply directly using, between two composite gadgets, the correct
charged wire gadget connecting their phase alignments.

The generalization of the construction of this section to an arbitrary tile set
is straightforward, and can be used to give an alternative proof of Lemma 3,
which for small tile sets gives smaller and simpler implementations.

Represent the colors of a Wang tile by eight bits x1, x2, . . . , x8, with the
convention that (x2, x1) are the west color, (x3, x4) the north color, (x5, x6)
is the east color, and (x8, x7) is the south color. A set of k Wang tiles then
becomes a set of k words in {0, 1}8, and we can represent it as a logical formula
in disjunctive normal form with k clauses.

Consider Figure 12. Repeat the rows 17–28 (0-indexed) k − 2 times. More
precisely, seeing the figure as a matrix, add 12(k − 2) more rows immediately
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Figure 12: The “blueprint” for simulating a tile set by preimages of g.
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after the 28th, copying the contents periodically from rows 17–28, and leave the
first 17 and last 15 rows intact.

Next, observe that, picking the ?s to be either horizontal wires or NOT-
gates, we can interpret the binary tree of 7 OR-gates followed by a NOT gate
as a conjunctive clause (using De Morgan’s law, i.e. inverting the inputs). We
can then interpret the column of ORs on the right as a disjunction of clauses.

Finally, we replace the gate tiles by the 90-by-90 blocks from the repository
[25], and connect them with charged wire gadgets – the minor additional com-
plication is now that we need to pick the phases context-sensitively, i.e. we have
to make sure that the outgoing phase of a wire going out from one gadget is
matched with the incoming phase of the neighboring one. This can be done, as
the repository lists the gadgets for connecting any pair of phases.

Theorem 2. There exists a totally periodic configuration x ∈ {0, 1}Z2

with
periods 6210× 37800 that has a g-preimage, but no periodic preimage.

Proof. The aperiodic Jeandel-Rao tile set [13] uses only four colors on each
side and has 11 tiles. With k = 11, after the rows 19–31 have been repeated
k − 2 times we have an array with 17 + 12 · 9 + 15 = 140 rows and 23 columns.
Replacing each cell by the appropriate 270 × 270 pattern, we get the claimed
periods of 6210× 37800.

The fundamental domain of the configuration x is shown in Figure 1.

7. Universality

In this section, we give more precise universality definitions, and state a
stronger version of Theorem 1. Our precise definition of simulation is a bit
involved, and readers without a background or an interest in universality per se
may be better off skipping straight to Section 8. Indeed, the proof of Theorem 1
and the construction from Section 6 can more or less replace the universality
discussion in terms of understanding Section 8 and proving the results therein.

Definition 1. Let X ⊂ AZ2

be a subshift. For m,n ∈ N, the (m,n)-blocking
of X is the Z2-dynamical system (X,mZ × nZ), where Z2 acts as (i, j) · x =
σ(mi,nj)(x). It can be seen as a subshift over the alphabet of blocks Am×n in
a natural way. Every block map ψ : X → Y lifts into a block map between
blockings ψm×n : (X,mZ × nZ) → (Y,mZ × nZ), called the (m,n)-blocking of
ψ. We denote it simply by ψ when there is no danger of confusion.

We interpret the (m,n)-blocking of a subshift X as a set of configurations
with a superimposed m× n grid. A block map f : (X,mZ× nZ) → Y needs to
satisfy the relation f(σ(mi,nj)(x)) = σ(i,j)(f(x)) for all (i, j) ∈ Z2 and x ∈ X,
that is, a shift by (1, 0) on the codomain side corresponds to a shift by (m, 0)
on the domain side, and similarly for (0, 1) and (0, n). Similarly, a substitution

τ : A → Bm×n of shape m × n can be interpreted as a block map τ : AZ2 →
(BZ2

,mZ× nZ).
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In the definition of simulations, we discuss commutation of diagrams of par-
tial functions. To make sense of this, we make explicit our formalism of partial
functions.

Definition 2. A partial function f : A↛ B consists of a domain dom(f) ⊂ A
and an underlying function fun(f) : dom(f) → B, which we may abusively
denote by f . Two partial functions are equal if they have equal domains and
underlying functions. We say that f is injective or surjective if fun(f) is, and
bijective if dom(f) = A and fun(f) is bijective. The composition g ◦ f : A↛ C
of two partial functions f : A ↛ B and g : B ↛ C is the partial function with
domain dom(f) ∩ fun(f)−1(dom(g)) and the obvious underlying function.

Definition 3. Let ψ : X → BZ2

be a block map, where X ⊂ AZ2

, and let C ⊂ B.
The alphabet co-restriction to C of ψ is the partial block map ψC : X ↛ BZ2

with domain ψ−1(CZ2

) and underlying function the restriction of ψ.

Definition 4. Let ψ : X → BZ2

, ϕ : Y → DZ2

be block maps, where X ⊂
AZ2

, Y ⊂ CZ2

are subshifts of finite type. We say that ψ weakly simulates ϕ if
there exist m,n ∈ N, an injective substitution τ : D → Bm×n, and a surjective
partial block map h : (X,mZ × nZ) ↛ Y , such that the following diagram of
partial functions commutes:

(X,mZ× nZ) Y

(BZ2

,mZ× nZ) DZ2

/
h

/

ψτ(D) ϕ

τ

(2)

We say ψ semiweakly simulates ϕ if h admits a block map section, that is, there
exists a block map χ : Y → (X,mZ× nZ) with h ◦ χ = idY . We say ψ strongly
simulates ϕ if h is bijective (and hence a conjugacy).

Note that the leftmost arrow in the above diagram is an alphabet co-restriction
of a blocking of ψ. In particular, the domain of h equals ϕ−1(τ(DZ2

)). The im-
ages τ(d) ∈ Bm×n for d ∈ D are sometimes called “macrotiles”.

A weak simulation of ϕ by ψ can be defined by the quadruple (m,n, τ, h). In
applications, we often want to produce this data algorithmically. It is important
to use the convention that to specify the partial block map h, it suffices to specify
any block map h′ : (AZ2

,mZ × nZ) → CZ2

that agrees with h on dom(h), and
otherwise may produce configurations that are not even in Y . In particular, we
do not need to actually compute dom(h).

The full shift on the image side should be seen as an “ambient full shift”
around the image that we are actually interested in. On the preimage side it is
natural to use SFTs rather than full shifts, because alphabet co-restrictions of
ψ : X → BZ2

can turn the domain into a proper SFT even if X is a full shift.
We first prove that the simulation relations respect conjugacies and are tran-

sitive.
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Lemma 1. Let X ⊂ AZ2

be an SFT and ψ : X → BZ2

a block map. Let
α : X → Y be a conjugacy. Then ψ strongly simulates ψ ◦ α−1 : Y → BZ2

, and
the simulation can be effectively computed from the local rules of ψ and α.

Proof. We can choose m = n = 1, τ = idB and h = α in the definition of the
strong simulation.

Lemma 2. Weak, semiweak and strong simulations are transitive, and the com-
position of two simulations can be effectively computed from its components.

Proof. Suppose X ⊂ AZ2

, Y ⊂ CZ2

, Z ⊂ EZ2

. Suppose ψ : X → BZ2

weakly
simulates ϕ : Y → DZ2

with quadruple (m,n, τ, h) and ϕ : Y → DZ2

weakly

simulates χ : Z → FZ2

with quadruple (m′, n′, τ ′, h′). We claim that ψ weakly
simulates χ with quadruple (mm′, nn′, τ ◦τ ′, h′◦h) where τ ◦τ ′ : F → Bmm

′×nn′

is a composition of substitutions, and h′ ◦ h : (X,mm′Z × nn′Z) ↛ Z is a
composition of partial functions.

Consider the following diagram of partial functions:

(X,mm′Z× nn′Z) (Y,m′Z× n′Z) Z

(BZ2

,mm′Z× nn′Z) (DZ2

,m′Z× n′Z) FZ2

/
h

/

ψτ(τ′(F ))

/
h′

/

ϕτ′(F )
χ

τ τ ′

(3)

The right half is the diagram for the simulation of χ by ϕ, which commutes by
assumption. Thus, it suffices to prove that the left half commutes.

If we apply the (m′, n′)-blocking operation to the diagram for the simulation
of ϕ by ψ, we obtain the following commutative diagram:

(X,mm′Z× nn′Z) (Y,m′Z× n′Z)

(BZ2

,mm′Z× nn′Z) (DZ2

,m′Z× n′Z)

/
h

/

ψτ(D) ϕ

τ

(4)

The only difference with this diagram and the left half of (3) is the further
subalphabet restriction on both vertical arrows, so it suffices to verify that the
domains of ϕτ(τ ′(F )) and τ ◦ ϕτ ′(F ) ◦ h are equal.

Suppose x ∈ X is in the domain of ψτ(τ ′(F )). Since τ(τ ′(F )) ⊂ τ(D)m
′×n′

,
in particular x is in the domain of ψτ(D), which equals the domain of τ ◦ϕ◦h by

the commutativity of (4). We also have τϕh(x) = ψ(x) ∈ τ(τ ′(FZ2

)). Because

τ is injective, this implies ϕh(x) ∈ τ ′(FZ2

), and hence x is in the domain of
τ ◦ ϕτ ′(F ) ◦ h.

Conversely, if x is in the domain of τ ◦ ϕτ ′(F ) ◦ h, then it is in the domain of

τ ◦ ϕ ◦ h = ψτ(D) and ψ(x) = τϕh(x) ∈ τ(τ ′(FZ2

)).
For semiweak and strong universality we simply note that the properties

of having a block map section and being a conjugacy are preserved by the
composition operation.

22



Strong simulation is the “best” we can hope for, in a sense. Semiweak sim-
ulation improves on weak simulation – due to the factor map we inherit all
complexity from ψ (things like periodicity and asymptotic Kolmogorov com-
plexity), and due to the section some subset of the fibers contains no extra
information.

Definition 5. If a block map ψ : X → BZ2

weakly (resp. strongly, semiweakly)

simulates every block map ϕ : Y → DZ2

, where X and Y are SFTs, then we
say that the triple (ψ,X,BZ2

) is weakly (resp. strongly, semiweakly) universal.
We say it is effectively weakly (resp. strongly) universal if we can additionally
compute a simulation (m,n, τ, h) from the local rule of ϕ. For effective semiweak
universality, we require that a section can also be computed.

Theorem 3. The circuit system (f, ZT , T
Z2

) is effectively strongly universal.

Proof. Consider any ϕ : Y → DZ2

. By Lemmas 1 and 2, we may apply a
recoding to Y so that ϕ becomes a symbol map and Y becomes the SFT of
tilings by a set of Wang tiles (in particular the side colors determine the tile).

In particular, we assume Y ⊂ CZ2

where C is a set of Wang tiles.
We now construct macrotiles that simulate the symbols in C. Pick large (but

otherwise arbitrary) m,n and for each c ∈ C, in the corresponding macrotile
τ(c) ∈ Tm×n we draw wires from each border and connect them to the bottom of
a computation zone in the middle of the macrotile (this part is independent of c).
The wires therefore synchronize a sequence of bits between adjacent macrotiles,
and the sequence on each side represents the color on the corresponding side
of one of the Wang tiles in C. In the computation zone of the macrotile corre-
sponding to c, we simply check that the bit sequences are the colors of a valid
Wang tile that maps to c under ϕ: it is clear that we can draw any classical
digital circuit with our tiles, and such circuits are computationally universal.

The map h simply maps each macrotile to the Wang tile in C coded by the
colors. If we perform computations in the computation zone deterministically,
h will be a bijection, so this is indeed a strong simulation.

The following result states that the notion of effectiveness in Definition 5
is in fact trivial. This state of affairs is not as unnatural as it may at first
appear. For example, one usually defines Σ0

1-completeness of a Σ0
1 language

L as the condition that for every Σ0
1 language K, there exists a computable

reduction from K to L. This reduction is a priori not uniformly computable
from the description of K, but since there does exist a Σ0

1-complete language
for which it is uniformly computable (the halting problem), the same holds for
every Σ0

1-complete language.
A similar result is also proved in [3, Theorem 11] in the context of simulations

between cellular automata. The authors define axioms for weak and strong
simulation relations, and show that if a strongly universal object exists, then
every weakly universal object is strongly universal.

Lemma 3. If a block map ψ : CZ2 → DZ2

is weakly, semiweakly or strongly
universal, then it is effectively so.
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Proof. We observe that ψ weakly (resp. strongly, semiweakly) simulates the

circuit system (f, ZT , T
Z2

) with a fixed simulation (m,n, τ, h). Given any ϕ :

Y → DZ2

, since (f, ZT , T
Z2

) is effectively strongly universal by Theorem 3,
it simulates ϕ by some simulation (m′, n′, τ ′, h′) that we can compute from a
description of ϕ and Y . By Lemma 2, (mm′, nn′, τ ◦ τ ′, h′ ◦ h) is a simulation
of ϕ by ψ that can be computed effectively from (m,n, τ, h) and (m′, n′, τ ′, h′).

The simulation of ϕ by (f, ZT , T
Z2

) is strong (thus it is weak and semiweak),
proving the weak and strong cases. For the semiweak case, we observe that since
h′ is bijective, its inverse is a section, and inverting an invertible block map can
be done effectively. By assumption we can also compute a section χ for h. Then
χ ◦ (h′)−1 is a section for h′ ◦ h.

Theorem 4. The Game of Life is semiweakly universal as a block map.

Proof. The proof of Theorem 1 actually shows that the Game of Life semiweakly
simulates the circuit system (f, ZT , T

Z2

). Namely we showed weak universality,
by constructing the macrocells τ(T ) and explained the map h (which interprets
the bits on our Game of Life wires as bits on the abstract wires carried in ZT
on top of the gate tiles).

For semiweak universality we need a section for h. The macrocells corre-
sponding to gate tiles were constructed so that we can pick zero borders away
from the wires. For each gate tile t and each tuple of bits (b1, b2, b3, b4) carried on
the wires, we pick for the macrotile corresponding to t an arbitrary (but always
the same) preimage for the macrotile where the Game of Life wires carry signals
corresponding to the bi, and the section of h simply performs the corresponding
substitution.

8. Corollaries

Here we list the theorems mentioned in the introduction, and explain how
they are obtained.

Theorem 5. Given a finite-support configuration, it is NP-complete whether it
admits a g-preimage.

Proof. This problem is known to be in NP [24, Theorem 1], so it suffices to
prove NP-hardness.

Consider the circuit system f : ZT → TZ2

, and as usual let XT be the set
of well-formed circuits and YT = f(ZT ). From a given SAT instance S we can
easily compute a polynomial-size finite-support XT -configuration xS which is in
YT if and only if the instance is satisfiable. Readers that skipped Section 7 will
note that the result immediately follows from the statement of Theorem 1.

To readers that did not skip Section 7, we explain how to deduce the re-
sult from semiweak universality by diagram-chasing. By Theorem 4, there is a
semiweak simulation (m,n, τ, h) of the circuit system by g (indeed this is the
simulation from Theorem 1).
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We claim that τ(xS) is in the image of g if and only if the SAT instance S is
satisfiable. This is immediate from the simulation diagram (2) in this context:

({0, 1}Z2

,mZ× nZ) ZT

({0, 1}Z2

,mZ× nZ) TZ2

/
h

/

gτ(T ) f

τ

Namely, if S is satisfiable, then xS ∈ TZ2

models a satisfiable circuit and has
an f -preimage z ∈ ZT . By the assumption that h is surjective, we find an
h-preimage y ∈ {0, 1}Z2

for z such that g(y) = τ(xS). In particular, τ(xS) has
a g-preimage.

Conversely, if τ(xS) has a g-preimage y ∈ {0, 1}Z2

, then by commutation we
have f(h(y)) = xS , showing S is satisfiable.

Theorem 6. The set of orphans for g is coNP-complete.

Proof. Determining whether a finite pattern has a preimage is clearly in NP.
As for hardness, if a rectangular pattern is padded with a thickness-4 border of
dead cells and this padded pattern is not an orphan for g, then the extension
to an infinite configuration by dead cells admits a g-preimage [24, Theorem 3].
By Theorem 5, the latter condition is NP-hard. Alternatively, hardness can be
proved directly as a finitary version of Theorem 5.

Theorem 7. Given a subshift of finite type Y , we can effectively compute
m,n ∈ N and an m×n-periodic configuration x ∈ {0, 1}Z2

such that the system
(g−1(x),mZ× nZ) admits Y as a split factor.

Proof. Consider the block map ϕ : Y → {0}Z2

from Y to a singleton subshift.
By effective semiweak universality of g, we can compute a semiweak simulation
(m,n, τ, h) of ϕ by g. The substitution image x = τ(0Z

2

) is m× n-periodic.
Consider now the diagram of the simulation:

({0, 1}Z2

,mZ× nZ) Y

({0, 1}Z2

,mZ× nZ) {0}Z2

/
h

/

gτ(0) ϕ

τ

The domain of gτ(0) is exactly g−1(x), and it also equals the domain of h.
Since the simulation is semiweak, h admits a block map section χ : Y →
(g−1(x),mZ × nZ), which we can also effectively compute. Hence Y is a split
factor of (g−1(x),mZ× nZ), as required.

The following theorems are immediate corollaries.

Theorem 8. It is undecidable (specifically, Π0
1-complete) whether a given totally

periodic configuration x ∈ {0, 1}Z2

has a g-preimage.
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Proof. Given an SFT Y , construct the configuration x ∈ {0, 1}Z2

as in Theo-
rem 7. Now x has a g-preimage if and only if Y is nonempty. The latter was
proved to be undecidable by Berger [2].

Theorem 9. Given a totally periodic configuration x ∈ {0, 1}Z2

that has a
preimage under g, it is undecidable whether it has a totally periodic g-preimage.
Given a totally periodic x, it is Σ0

1-complete whether it has a totally periodic
g-preimage.

Proof. Given an SFT Y , construct the configuration x ∈ {0, 1}Z2

as in Theo-
rem 7. If Y is nonempty, then the corresponding periodic configuration x has a
preimage. Furthermore, if Y has a periodic point, then by semiweak universal-
ity so does x (by applying the section). Conversely, any periodic preimage of x
maps to a periodic point of Y . It follows that Y has a periodic point if and only
if x has a periodic preimage. Given a nonempty SFT, it is Σ0

1-hard, in partic-
ular undecidable, whether it contains a totally periodic point [12, Theorem 5],
proving the first claim.

The second claim follows from the same Σ0
1-hardness result, and the obser-

vation that the problem is Σ0
1 since we simply need to exhibit a totally periodic

preimage to prove that one exists.

We note that Theorem 9 does not follow directly from weak universality, since
we cannot prove the existence of a totally periodic preimage without the section.
More concretely, take any aperiodic SFT X and consider the block map h : X×
{0, 1}Z2 → {0, 1}Z2

defined by h(x, y) = g(y). Then h is weakly universal, but
no configuration has a totally periodic h-preimage, so the problems of Theorem 9
are trivially decidable.

Theorem 10. There exists a totally periodic configuration x ∈ {0, 1}Z2

that
has a g-preimage but no computable g-preimage.

Proof. There exists an SFT Y with no computable configurations [17]. Con-
struct the configuration x as in Theorem 7, and observe that x cannot have a
computable g-preimage, since its h-image would be a computable configuration
in Y .

Theorem 11. There exists a totally periodic configuration that has a g-preimage,
but every preimage has Ω(n) Kolmogorov complexity in every n× n-pattern.

Proof. The proof is similar to the ones above, but uses the existence of SFTs
with maximal Kolmogorov complexity in all patterns [5].

Of course, the Kolmogorov complexity of the g-preimages is much lower than
that of the factor – the hidden constant in the Ω(n) is very small.
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9. Implementation and verification of SAT-based searches

We constructed the gadgets of Section 4 using two different SAT-based search
programs and some manual work. Both programs are based on the following
idea. Fix a finite set D ⊂ Z2 of cells and a set F ⊂ {0, 1}D of possible “forced
preimages”. Our goal is to produce a single finite pattern P such that the set
g−1(P )|D = {Q|D | Q ∈ g−1(P )} of shape-D subpatterns of its preimages is
exactly F . We see this as an optimization problem: there is a hard constraint
F ⊂ g−1(P )|D, and the goal is to minimize the cardinality of g−1(P )|D \ F ,
hopefully to zero. We also need to impose additional hard constraints, such as
P containing a wire at a certain position and 0-cells on the rest of its border, or
relaxations, like only considering preimages that have a valid “incoming” signal
on top of a wire of P .

The first algorithm is essentially a backtracking hill-climbing optimizer, and
the second one is a genetic algorithm. Both programs are written in Python
and use the PySat library [11] to invoke the Glucose 4.1 SAT solver [1]. The
source code for the hill-climber is available at [26].

9.1. The hill-climber

The hill-climber program constructs the pattern P iteratively, starting from
the empty pattern and adding one or more specified cells at a time. It expects
the following parameters:

• A finite set {D1, . . . , Dn} of nonempty finite subsets of Z2. Their union
D =

⋃n
i=1Di is the domain of the forced preimages.

• A finite set {q1, . . . , qk} of finite or infinite patterns, given as functions
qi : Z2 → {0, 1,⊥} with ⊥ meaning an unspecified cell.

• For each i ∈ {1, . . . , k}, a set Fi ⊂ {0, 1}D of forced patterns. The seman-
tics is that restricting to D those preimages that are compatible with qi
should produce exactly the set Fi.

• A finite or infinite pattern, again given as a function p : Z2 → {0, 1,⊥}.
It represents a constraint on P : if p(v⃗) = b ∈ {0, 1}, then we must have
Pv⃗ = b.

• Several technical parameters that guide the search process.

The program proceeds in rounds. On each round, we enumerate the outer
border ∂P of the current candidate pattern P , which consists of those cells that
are not in the domain of P but have an immediate neighbor (orthogonal or
diagonal) that is. For each v⃗ ∈ ∂P and b ∈ {0, 1}, we extend P into a new
pattern P ′ by specifying P ′

v⃗ = b, and compute its score s(P ′) as defined below.
The extension with the lowest score will replace P . If no extension has a strictly
lower score than P , then we enumerate all extensions by two adjacent cells on
the border, then three, and so on up to some bound. If no better extension is
still found, we repeatedly try to extend P by randomly specifying the values of a
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randomly chosen rectangle of cells near the border of P . After some number of
tries, we give up and backtrack, choosing the next best extension of the previous
round instead. The program keeps track of the entire history of the search, so
it can backtrack as far as needed.

The score of a candidate pattern P is defined as

s(P ) =

k∑
i=1

n∑
j=1

1

|Dj |
log

1 +
∑

R∈Q(i,j)

M(i, j, R)

|Dj |


if it is valid (see below), and s(P ) = ∞ if it is invalid, with lower score being
better. Here, Q(i,j) is the set of patterns R = Q|Dj

where Q ∈ g−1(P ) is a
preimage that agrees with qi, minus those in (Fi)|Dj

, and

M(i, j, R) = 1 + max
Q∈Fi

|{v⃗ ∈ Dj | Rv⃗ = Qv⃗}|.

is one plus the largest number of cells on which R agrees with some pattern of
Fi.

The high-level idea of the score function is the following. For each i ∈
{1, . . . , k}, j ∈ {1, . . . , n} and R ∈ {0, 1}Dj \ Fi, we want to encourage the
program to extend the pattern P in such a way that no preimage Q ∈ g−1(P )
that is compatible with qi contains the pattern R at Dj . Each pattern R that
does occur in such a preimage incurs a penalty proportional toM(i, j, R)/|Dj | >
0 inside the logarithm, so the program is incentivized to extend P in such a way
that these patterns do not occur in its preimages. Furthermore, the program is
encouraged to first get rid of patterns R with higher M(i, j, R), that is, those
that are similar to some pattern in Fi (which we do not want to forbid). Our
intuition is that such patterns R are easier to handle when the pattern P is still
small and newly added cells are close to the domain Dj .

Notice that since we have covered the domain D by the subsets D1, . . . , Dk

that are scored separately, having a score of 0 does not guarantee the property
that restricting qi-compatible preimages of P to D gives exactly Fi, unless
k = 1. The reason for the cover is efficiency: the size of each Q(i,j) is initially
exponential in that of Dj . However, as P grows, the subsets Q(i,j) shrink, and
when two of them become small enough, the program replaces the respective
sets Dj(1) and Dj(2) with their union, thus decreasing k.

Let us now discuss the validity of patterns and the ways to verify it. There
are three reasons why a pattern P can be invalid. The first is that for some
v⃗ ∈ Z2 we have p(v⃗) = b ∈ {0, 1} and Pv⃗ = 1 − b. This can be verified
immediately after extending P by the cell v⃗. The second is that for some
i ∈ {1, . . . , k} and Q ∈ Fi, there is no preimage R ∈ g−1(P ) that is compatible
with qi and satisfies R|D = Q|D. This can be verified with a single call to a
SAT-solver: it is simple to construct a SAT instance that is unsatisfiable if and
only if the above property holds.

The third reason is more subtle. Consider the situation that for some i ∈
{1, . . . , n} there are two preimages Q,R ∈ g−1(P ) which are compatible with qi,
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such that Q|D ∈ Fi, R|D /∈ Fi, and Qv⃗ = Rv⃗ for every cell v⃗ near the border of
P . We call this pair of preimages a diamond. Then for every extension P ′ of P ,
either both Q and R or neither of them extend to qi-compatible preimages of P ′.
Unless Q|D has another preimage that is not part of a diamond, the pattern R|D
can never be forbidden from qi-compatible preimages by extending P . We deem
P to be invalid if it admits a diamond, as this potentially dangerous property
can be checked with a bounded number of calls to a SAT-solver, whereas there
does not seem to be an efficient way of determining whether each forced pattern
admits a preimage that is not part of a diamond.

The final zero-score pattern P typically has an irregular shape, so it is com-
pleted into a rectangle one cell at a time, favoring 0-cells unless doing so would
result in an invalid pattern. The constraint of admitting preimages with only
0-cells near the border is not enforced by the program, so it must be done man-
ually. We added and removed 1-cells near wires in a trial-and-error fashion until
the property held.

The program has various additional features that we have not fully described
here. We only mention a forced preference to filling small crevices on the border
of P before other cells, the possibility of forcing P to be periodic in some
direction, and support for multithreading.

The hill-climber program was used to find all patterns of Section 4 except the
charger.5 We note that the patterns were found with various early iterations
of the program with different scoring functions. Together with the random
component of the search, this means that the current program may produce
vastly different gadgets.

9.2. The genetic algorithm

Like the hill-climbing algorithm, the genetic algorithm attempts to find a
pattern that forces certain behavior for the preimage. Unlike the hill-climbing
algorithm, the genetic algorithm was not written as a general-purpose search
program, but rather experimentally with hard-coded inputs and parameters.
Since we only found the charger with this approach, we concentrate on the
charger-specific optimization problem. As finding patterns with it requires ex-
tensive human effort, we have not included its source code.

What we want is to find a pattern P ∈ {0, 1}[0,2n−1]×[0,m] satisfying the
following conditions. The first two rows contain only a wire, which is precisely
at the midpoint, i.e. supp(P |[0,2n−1]×[0,1]) = [n−1, n]× [0, 1], and the remainder
of the border of thickness 2 contains only zeroes. For at least two of the wire
signals that can appear on [n − 2, n + 1] × [0, 1], they appear with zeroes on
the remainder of the border. Conversely, the number of different restrictions of
preimages to [n− 2, n+ 1]× [0, 1] is precisely two, namely we see precisely two
different phases of the wire signal.

5In fact, while we did not manage to directly charge a wire with the hill-climber, we did
find a “relaxer” using it. It has the specs N ⊢ E;EN ∈ {00, 10} meaning given a charged
wire in a fixed phase, it can relax the phase to one of two choices. In combination with the
enforcer this gives a (rather large) charger gadget.
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The conditions on the border of P hold at all times by our choices of initial
patterns, and choice of how we modify them. We use a simple scoring function
to check how far a pattern is from having the latter properties: If only zero or
one wire signal phases occur in the preimages with zeroes on the border, the
pattern is immediately discarded (or given score −∞). Then we simply count
the number s of restrictions of preimages to [n − 2, n + 1] × [0, 2], and use the
score s−2; the maximal possible score is then 0, and it means that there are only
two possibilities, which must be two wire signal phases, since we are guaranteed
that two phases are even possible with zeroes elsewhere on the border of the
preimage pattern. Both the check and the counting are easy to perform with a
SAT solver.

We are then in the standard scheme of searching for a binary pattern under
a scoring function, with a particular score indicating a pattern with the desired
property. To solve this problem genetically, the algorithm keeps, at all times,
track of a finite number n of patterns (we used an upper bound of 100). It
performs a given number of iterations on this population. In each iteration, it
performs reproduction with genetic modifications to produce a number of new
patterns. They are scored, and the best n are kept, with a minor twist: to
keep the population from becoming too homogenous, we additionally compare
“genetic similarity” (by simply counting the number of equal cells!), and do not
include a pattern if it is too similar to multiple already included patterns.

Our reproduction rules are the following. For cloning and mutation, we pick
a pattern at random, then pick a small set of random small rectangles contained
in its domain, and randomly pick the new contents of these rectangles. For
crossover, we pick two random patterns P1, P2 in our set, and construct a new
pattern P by picking the ith row randomly from the corresponding row of P1

or P2, for each i ∈ [0,m]. The choices of which pattern each row is taken from
are not independent, but are generated by a Markov process that prefers to pick
the row i+ 1 from the same pattern that row i is copied from.

The idea of crossover is that some rows might somehow eliminate some
preimages, and other rows might eliminate others. There were indeed situations
during search where the algorithm was stuck for a while, after which crossover
finally found a better solution. We do not know, however, whether this was
truly a result of combining two patterns, or whether it could have been replaced
by a more aggressive mutation rule.

9.3. Verification

The repository [25] contains a Python script that verifies the claimed prop-
erties of the gadgets of Section 4 (that they implement the claimed specs), and
those gadgets of Section 5 that are small enough for the SAT-solver to handle
(that they implement the claimed specs and have the correct dimensions and
wire offsets). The script allows the user to choose between three different SAT
encodings of the local rule of the Game of Life (a divide-and-conquer encod-
ing with no auxiliary variables, an encoding based on sorting networks, and an
encoding based on a merge operation) to reduce the likelihood of errors in the
encoding resulting in false positives.
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10. Conclusion

The contributions of this article have many forms. First, of course, we have
shown the NP-completeness of the existence of preimages of finite patterns for
the Game of Life, and proved several hardness results for the preimages of infi-
nite periodic configurations. Second, we present a unified theoretical framework
for proving such computational hardness results about finding preimages under
a CA. Third, we provide an implementation of an algorithm for constructing
gadgets that can in principle be adapted to any two-dimensional CA, and with
a bit more work, to any CA in any dimension greater than 1.

In Section 6 we produced an explicit 6210 × 37800-periodic configuration
that admits preimages, but only aperiodic ones. We have not seriously tried
to optimize the periods, apart from seeking to produce a somewhat readable
picture in Figure 1.

Question 1. What are the smallest periods (for example in terms of the size
of the fundamental domain) of a periodic configuration that has a g-preimage,
but no periodic preimage?

In Section 7 we developed a theory of simulations between block maps and
proved that the Game of Life is semiweakly universal. We leave open whether
it is strongly universal. In concrete terms, strong universality corresponds to
simulating the circuit system of Section 5 using rectangular patterns in such a
way that the preimages of a configuration that simulates a circuit correspond
bijectively to the valid assignments of signals in the circuit: there must not be
any extraneous preimages. This would imply, for example, that it is undecid-
able whether a periodic configuration that admits a preimage also admits an
aperiodic preimage, which for now we cannot conclude.

Question 2. Is the Game of Life strongly universal as a block map?

While our results are particular to a single step of Life, the method of finding
constrained preimages by computer searches accompanied by SAT-solvers is in
principle applicable to any cellular automaton in at least two dimensions (and
any fixed number of iterations of such a CA). However, the methods do not
readily extend to beyond a fixed number of iterations, and even then the amount
of computational resources needed grows rapidly with the radius of the CA.

Of particular interest would be a general method for performing long-term
backwards computation in the Game of Life. So far, we do not have such tools.
Namely, while we show that in a single step backwards in time, a configuration
can enforce (even infinitary) computation on every preimage, there is neverthe-
less a lot of freedom in the choice of the preimage, and thus we have no control
on the second-order preimage.

Question 3. Can similar results be proved for higher powers of the Game of
Life?

Question 4. Are there Game of Life configurations such that all of their preim-
age chains perform universal computation backwards in time?
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