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SNAKES CAN BE FOOLED INTO THINKING THEY LIVE IN A

TREE

LAURENT BARTHOLDI AND VILLE SALO

Happy birthday, and long life, Jarkko!

Abstract. We construct a finitely generated group which is not virtually free, yet
has decidable snake tiling problem. This shows that either a long-standing conjecture
by Ballier and Stein (the characterization of groups with decidable domino problem
as those virtually free ones) is false, or a question by Aubrun and Bitar has a positive
answer (there exists a group for which the domino and snake problems are of different
difficulty).

1. Introduction

The domino problem on a finitely generated group G = 〈S〉 asks to decide, given finite
sets C of “colours” and D ⊆ C × S × C of “dominoes”, whether G’s Cayley graph can
be vertex-coloured by C in such a manner that every edge carries a domino in D.

When G = Z this is the classical problem with standard 2× 1 dominoes, and is easily
solvable. When G = Z

2 dominoes are usually called Wang tiles, and Berger’s celebrated
result [5] is that this problem is unsolvable.

The domino problem belongs in fact to a very small fragment of the monadic second-
order logic of G’s Cayley graph. Much attention has been devoted to delineating the
precise boundary between decidability and undecidability, and the Ballier-Stein conjec-
ture states that it is decidable precisely when the whole monadic second-order logic is
decidable, namely precisely when G has a finite-index free subgroup (it is virtually free):

Conjecture 1.1 (Ballier & Stein [2]). The domino problem on a finitely generated group
G is decidable if and only if G is virtually free.

Recall that a group is virtually free if and only if its Cayley graph is quasi-isometric
(see §3) to a tree.

Snake tiling problems relax the constraint that G’s Cayley graph be entirely vertex-
coloured; the basic variant requires merely that an infinite path (the snake) be vertex-
coloured, with legal dominoes on the path’s edges. Snake problems were introduced by
Myers [13], and this specific one appears in [8, 9]. Kari [11] proved (as conjectured in [9])
that it is unsolvable for the grid Z

2. Kari’s solution arises in fact from his independent
earlier work in [10] on undecidability of the reversibility (and surjectivity) problem for
cellular automata, where he used a variant of the snake problem for directed tile sets
(where the snake can in a sense choose where it moves).

Aubrun and Bitar [1] consider numerous variants of the snake problem on finitely
generated groups, and ask:

Question 1.2 (Aubrun & Bitar [1, Question 8.2]). Is there a finitely generated group
with undecidable Domino Problem and decidable snake problem? Is there such a group
where the inverse holds?
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2 LAURENT BARTHOLDI AND VILLE SALO

They show that essentially all variants of the snake tiling problem are decidable on
virtually free groups, and conversely are undecidable on a large class of groups including
all (central infinite non-torsion)-by-(infinite non-torsion) groups. Note that the domino
problem is independent of the choice of generating set S, while this is unclear for the
snake problems.

These results might lead credence to the conjecture that snake problems are decidable
precisely on virtually free groups; but we show in this article that such a variant of the
Ballier-Stein conjecture is not true:

Theorem 1.3. There exists a finitely generated group which is not virtually free, but
which has decidable snake tiling problem for any generating set.

In particular, either the Ballier-Stein conjecture is false (if the domino problem is
solvable for this group), or the Aubrun-Bitar question has a positive answer for this
group. We conjecture in fact that the former holds, and that an improvement of our
construction will lead to a non-virtually free group with solvable domino problem.

2. Snake problems

We collect here some basic definitions, and an overview of the different variants of the
snake problem.

Recall that, for a finitely generated group G = 〈S〉 with S a finite generating set, its
Cayley graph is the graph with vertex set G and for each g ∈ G, s ∈ S an edge labeled
‘s’ from g to gs.

Definition 2.1 (Tileset). Let G = 〈S〉 be a finitely generated group. A tileset for G is
a pair Θ = (C,D) of finite sets with D ⊆ C × S × C.

If the dependency on S is unclear, we will denote the tileset by Θ = (S,C,D), and
call S the memory set of Θ. △

We may visualize a tileset as a multigraph still written Θ with vertex set C, and for
each (c, s, c′) ∈ D an edge from c to c′ labeled ‘s’.

Definition 2.2 (Domino problem). The domino problem for a finitely generated group
G = 〈S〉 asks to determine, given a tileset (C,D), whether there exists a vertex-colouring
x : G→ C of G’s Cayley graph such that (x(g), s, x(gs)) ∈ D for all g ∈ G, s ∈ S. △

In other words, the domino problem asks to determine whether there exists a map of
labeled graphs from G’s Cayley graph to the graph associated with (C,D).

We collect now a variety of snake problems for a group G = 〈S〉. We insist that these
problems a priori depend on the choice of generating set S.

Definition 2.3 (Snake problem). Let G = 〈S〉 be a finitely generated group. An snake
is an injective map ω : Z/nZ→ G, for some n ≥ 0, such that ω(i)−1ω(i+ 1) ∈ S for all
i ∈ Z/nZ. It is an infinite snake if n = 0 and an ouroboros if n ≥ 1.

Let (C,D) be a tileset. The weak snake problem asks whether there exists a snake
ω : Z/nZ→ G and a colouring x : ω(Z/nZ)→ C such that (x(ω(i)), ω(i)−1ω(i+1), x(ω(i+
1))) ∈ D for all i ∈ Z/nZ; then (ω, x) is called a weak snake. It subdivides into the weak
infinite snake problem and weak ouroboros problem if we further require n = 0 or n ≥ 1.

The strong snake problem asks whether there exists a snake ω : Z/nZ → G and a
colouring x : ω(Z/nZ) → C such that (x(g), s, x(gs)) ∈ D whenever g, gs ∈ ω(Z/nZ);
then (ω, x) is called a strong snake. Again it subdivides into the strong infinite snake
problem and strong ouroboros problem according to whether n = 0 or n ≥ 1.

The directed weak/strong snake problem has the modified requirement that the colour-
ing be of the form x : ω(Z/nZ)→ C ⊆ C′×S, and the snake always follows the direction
in the S-component, namely x(ω(i)) = (∗, ω(i)−1ω(i+ 1)) for all i ∈ Z/nZ. △
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In total, we have defined 12 different snake problems, by combining the (weak/strong),
(directed/undirected) and (snake/infinite snake/ouroboros) constraints. These problems
are stated for a finitely-generated group with a fixed generating set. We also define
versions without a generating set, i.e. for X = any of these 12 problems, the X snake
problem for the group G is “given a finite generating set S ⊆ G and a tileset for G = 〈S〉,
is there an X?”.

Naturally, if problem X is decidable for a group G, then it is decidable for the group
G = 〈S〉 with any fixed generating set. We give simple reductions between the above
problems.

The weak infinite snake problem naturally combines a classical 1-dimensional domino
problem, that of colouring the integers according to domino rules, with an added geo-
metric constraint that every domino carries an element of S, and the path traced by the
corresponding edges in G’s Cayley graph is injective.

The strong infinite snake problem is perhaps the most natural especially in the context
of Conjecture 1.1, in that it may equivalently be formulated as follows: “does there exist
an infinite, connected subgraph of G’s Cayley graph and a valid (C,D)-tiling of this
subgraph?”. Indeed every infinite snake traces an infinite connected subgraph, and
every infinite connected subgraph contains an infinite line, which can be made bi-infinite
by taking a limit of translates.

On the other hand, the strong directed snake problem is quite robust, as the following
lemmas show.

Lemma 2.4. The strong, weak and directed weak problems all reduce to the directed
strong problem.

Proof. We will show ‘strong ≤ directed strong’, and then ‘weak ≤ directed weak ≤
directed strong’.

Consider first an instance (C,D) of the strong problem. Replace C by C × S. A
directed strong snake in the new tileset (C×S,B) is just a strong snake for the original.
Thus, ‘strong ≤ directed strong’.

The same argument gives ‘weak ≤ directed weak’.
Finally, consider an instance (C × S,D) of the directed weak problem, with D ⊆

C × S × C, namely the dominoes in D do not know the directions. We may add this
information by replacing C by C′ := C × S, and set

B′ := {((c, s), s, (c′, s′)) : (c, s, c′) ∈ B, s′ ∈ S}.
In this manner, the weak directed problem reduces to the variant of the weak problem
in which the direction information is directly available to the dominoes.

With this assumption in place, we can add to B′ all triples ((c, s), s′′, (c′, s′)) with
s′′ 6= s. Any strong directed snake will remain a strong directed snake, since these new
triples do not appear on ω(Z/nZ). However, now every weak directed snake is actually
a strong snake as well, so the strong snakes for the new tileset are precisely the weak
snakes for the old tileset. �

Lemma 2.5. If (S,C,D) is an instance of the strong directed snake problem, and T ⊃ S
is any given finite set, then we can compute an instance (T,C′, D′) of the strong directed
snake problem which is equivalent to (S,C,D).

Proof. By the construction in the previous proof, we may assume that the direction
information is available to the snakes. Then, informally speaking, we can use the same
tileset, except we check the constraints only in the directions in S. We omit the details.

�

Let us repeat more precisely our main result:
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Theorem 2.6. There exists a finitely generated group G which is not virtually free, but
for which the strong directed infinite snake problem and the strong directed snake problem
are decidable.

Lemmata 2.4 and 2.5 then imply that the other variants of snake and infinite snake
problems are decidable for G.

We are not able to settle the problem for ouroboroi; the following remains open.

Question 2.7. Is there a finitely generated group which is not virtually free, and for
which some / all of the ouroboros problems are decidable?

3. Amalgamated free products and HNN extensions

For groups A,B,C with imbeddings A ←֓ C →֒ B, recall that their amalgamated free
product A∗CB is the universal (“freest”) group generated by A∪B in which both images
of C coincide. Write A = C ·TA and B = C ·TB by choosing transversals TA, TB of C in
A,B respectively; without loss of generality 1 ∈ TA and 1 ∈ TB. There is then a normal
form for A ∗C B, see [12, Theorem IV.2.6]: every element can be uniquely represented
as the product of an element of C with a word alternating in TA \ {1} and TB \ {1}.

Recall that a quasi-isometry between metric spaces X,Y (such as graphs) is a map
f : X → Y such that, for some constantK, we haveK−1d(x1, x2)−K ≤ d(f(x1), f(x2)) ≤
Kd(x1, x2) + K and d(f(X), y) ≤ K for all x1, x2 ∈ X, y ∈ Y . Geometric properties
of groups are those that may be defined on the group’s Cayley graph and are invariant
under quasi-isometry.

If A,B are finite, then G := A ∗C B is virtually free, and its Cayley graph is quasi-
isometric to a tree. Better, there is a natural tree on which G acts with finite stabilizers,
its Bass-Serre tree. Its vertices are right cosets of A,B respectively in G, its edges are
right cosets of C, with endpoints given by coset inclusion, and the action is given by
right multiplication.

Closely related is the HNN extension A∗C . It is the universal group generated by
A ∪ {t} in which t conjugates both imbeddings of C. There is a natural map A∗C → Z

given by t 7→ 1, A 7→ 0, with kernel · · · ∗C A ∗C A ∗C A ∗C · · · . Again there is a normal
form for A∗C , see [12, Theorem IV.2.1]: choosing as before transversals T− ∋ 1, T+ ∋ 1
of both imbeddings of C in A, every g ∈ A∗C can be uniquely represented as

(1) g = g0t
ε1g1 · · · tεngn

with g0 ∈ A, εi ∈ {±1}, gi ∈ Tεi and no consecutive t±11t∓1.
If again A is finite, then G := A∗C is virtually free, its Cayley graph is quasi-isometric

to a tree, and there is a natural tree on which G acts with finite stabilizers, its Bass-Serre
tree. Its vertices are right cosets of A in G, its edges are right cosets of C and Ct, with
the edge Cg connecting Ag to At−1g and the edge Ctg connecting Ag to Atg, and the
action is given by right multiplication.

By classical results of Baumslag and Tretkoff [4, 15, 3], the groups A ∗C B and A∗C
are residually finite as soon as A,B are finite.

3.1. A tower of HNN extensions. Our basic construction is as follows. Start by
A−1 = 1 and A0 any finite group. Then, inductively: given two imbeddings of An−2

in An−1, let An be a finite quotient of An−1 ∗An−2
An−1 in which both An−1 imbed,

and proceed with these two imbeddings. The art, in the construction, is to choose the
quotient An appropriately.

Let Gn denote the HNN extension An∗An−1
. The inclusion in the first factor induces

homomorphisms An−1 →֒ An compatible with the inclusions of both copies of An−2,
and therefore induces homomorphisms πn : Gn−1 → Gn. Let G denote the colimit of
(G0 → G1 → · · · ).
Lemma 3.1. G is generated by A0 ∪ {t}.
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Proof. It suffices to prove that πn is onto for all n ≥ 1. Now Gn is generated by An∪{t}
and therefore by An−1 ∪ A′

n−1 ∪ {t} where A′
n−1 is the other copy of An−1 in An; and

these two copies are conjugate by t so Gn is generated by An−1 ∪ {t}, which are the
generators of Gn−1. �

Lemma 3.2. If the An are not eventually constant (and therefore increase unboundedly,
since they are subgroups of each other), then G is not virtually free.

Proof. If indeed G were virtually free, it would have a bound on the cardinality of its
finite subgroups. �

There are quite a few natural examples of sequences of groups An, with isomorphisms
αn : An−1 → A′

n−1 between two subgroups of An:

• An = (Z/2)n and αn : (Z/2)
n−1 × 1 → 1 × (Z/2)n−1. The resulting group G is

the “lamplighter group” Z/2 ≀ Z;
• An = Sn and αn : S{1,...,n−1} → S{2,...,n}. The resulting group G is the group of
permutations of Z that act as a translation away from the origin;
• An = GL(n,Fp) and αn : GL(n,Fp) × 1 → 1 × GL(n,Fp). The resulting group
G is the group of invertible Fp-linear maps of Fp[t, t

−1] that act as a power of t
on large enough powers of t.

Lemma 3.3. For every finite I ⊂ Z and every r ∈ N, the following holds for all n ∈ N

large enough. Consider the Cayley graph of Gn with generating set BGn
(r), and its

subgraph Cr,I spanned by all elements whose image in Z belongs to I. Then all connected
components of C are finite, and of bounded cardinality.

Proof. We may replace I by the interval I ′ := [min I − r,max I + r] and consider the
subgraph C1,I′ of the Cayley graph of Gn with generating set A0 ⊔{t}. Let n denote the
diameter of I ′. Consider x, y ∈ C1,I′ that are connected by a path g, seen as an element
of G0 = A0 ∗ 〈t〉. Because of the constraints to its image in Z, we may write g in the
form

g = ti0gt
i1

1 · · · gt
i
k

k tik+1

where −n ≤ i0, ik+1 ≤ n and 0 ≤ i1, . . . , ik ≤ n. Then in Gn we have g = ti0g′tik+1 with
g′ ∈ An, a finite group. Therefore the number of vertices of C1,I′ reachable from x is at
most 4n2#An. �

3.2. Marked groups. We consider groups generated by a fixed finite set S. These
appear in the literature as marked groups, or quotients of a fixed free group FS . We
denote by BG(r) the ball of radius r in a marked group G. For example, if S = A0 ∪
{t, t−1}, then by Lemma 3.1 all Gn are marked groups.

The space of marked groups, introduced by Grigorchuk and Gromov, consists in the
set GS of marked groups, topologized by declaring two marked groups G,H to be close
if they agree on a large ball, namely if BG(r) and BH(r) are isomorphic as S-labeled
graphs for some large r. See [7] for a good survey.

Lemma 3.4. The groups Gn above converge, in the space of marked groups, to G.
Furthermore, this convergence may be made as fast as desired: for any function

Φ: GS → N the sequence Gn may be chosen in such a manner that for all n the balls of
radius Φ(Gn) coincide in Gn and Gn+1.

Proof. Every An is a subgroup of G. The normal form for HNN extensions implies that
every product of A0 and t, t−1 involving at most n/2 copies of t remains in An, so the
ball of radius n/2 remains constant from Gn on.

Let us return to the construction, to prove the quantitative version. We start with
the S-marked group G0 = A0 ∗ 〈t〉, with S = A0 ⊔ {t}. Then, inductively, we have

Gn = An∗An−1
∼= (An ∗An−1

An)∗An
,
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since in the latter group both of its An’s are identified by the HNN extension and there
remains the identification of their An−1’s as in the former group.

To construct Gn+1, we quotient An ∗An−1
An above into a finite group An+1. For now,

both of these groups are generated by A0 ⊔A0. Residual finiteness of free products with
amalgation implies that there are sequences of such An+1 that converge to An ∗An−1

An

in GA0⊔A0
. Now the normal form (1) implies the convergence of Gn+1 to Gn, so they

can be made to agree on a large ball of radius Φ(Gn). In essence, this is continuity of
the HNN extension construction in GS . �

4. Tree automata

We briefly recall here some basics about infinite tree languages; see [14, Part II] for a
good introduction.

Fix once and for all a finite set S, and a regular prefix-closed subset W of S∗; here
“regular” means that there is a finite state automaton accepting W . We naturally view
W as a tree, with an edge between w and ws for all w ∈ W, s ∈ S such that ws ∈ W .

Definition 4.1 (Tree language). Consider a finite alphabet Σ; then a tree language is
a subset L of ΣW , namely consists of Σ-vertex labelings of the tree W . △

It may psychologically be preferable to replace W by the full tree S∗, and to view
as tree language a subset of ΣS∗

; this may be achieved by replacing Σ by Σ ⊔ { } and
extending x ∈ ΣW to x : S∗ → Σ ⊔ { } by giving it the value outside W .

Definition 4.2 (Rabin automaton). A Rabin automaton A consists of a finite set Q,
the stateset, a start state q0 ∈ Q, productions Π ⊆ Q×Σ×(Q∪{†})S, where a production
is written (q, σ)→ (qs)s∈S′⊆S keeping on the right all coordinates 6= †, and a collection
(N1, P1), . . . , (Nk, Pk) of pairs of subsets of Q called negative and positive acceptance
constraints.

A successful run of A is a Q × Σ-vertex labeling r of W such that the first (Q-)
coordinate x(1)1 of the root is q0, at every w ∈W ⊂ S∗ with descendants ws1, . . . , wsk ∈
W the labels satisfy (x(w), {s 7→ w(xs)1 or †}) ∈ Π, and for every infinite ray ξ ∈ Sω in
W there is an acceptance constraint (Pi, Ni) such that the set of states r(ξ1 . . . ξn)1 that
appear infinitely many times has trivial intersection with Ni and non-trivial intersection
with Pi.

A language L is regular if it is the set of projections to ΣW of all successful runs of a
Rabin automaton. △

The assumption that W is a regular, prefix-closed language is equivalent to the one-
element unary language over W , with Σ = {·}, being regular: simply take for Q the
stateset of an automaton recognizing W , and as productions all (q, ·, {s 7→ q · s or †}).

The main properties of regular tree languages are that (1) they form an effective
Boolean algebra: there are algorithms that, from Rabin automata defining languages
L,M, produce Rabin automata defining L

∁,L∩M,L∪M; and (2) emptiness is decidable:
there is an algorithm that, given a Rabin automaton, decides whether it accepts at least
one tree.

The proof of decidability of monadic second-order logic on regular trees, and therefore
on virtually free groups, in fact proceeds as follows. Firstly, every monadic second-order
statement can be converted into a Rabin automaton, in such a manner that the associated
language is non-empty if and only if the statement is true; then emptiness of regular tree
languages is shown to be decidable.

We include, in brief form, a proof of the following fundamental result, since we shall
need a small extra property that can be extracted from the proof. Recall that a finite
state automaton with output Σ, for an output alphabet Σ, is a collection of finite state
automata (Aσ)σ∈Σ accepting disjoint languages; such a device defines a partial map
x : S∗

99K Σ by x(w) = σ whenever Aσ accepts w:
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Theorem 4.3 (Rabin, see [14, Theorem 9.3]). If L is a non-empty regular tree language,
then L contains a regular tree, namely a labeling x : W → Σ that is given by a classical
finite state automaton with alphabet S and output Σ.

Sketch of proof. Let A be a Rabin automaton recognizing L. First, without loss of
generality we may assume that q0 never occurs in right sides of productions, and Σ = {·};
this last step is achieved by replacing Q with Q×Σ, and the regular tree we are seeking
is now a regular run x : W → Q.

A state q ∈ Q is called live unless q = q0 or there is a single transition (q, (q, . . . , q)).
Let r : W → Q be a successful run. The proof proceeds by induction on the number

of live states in r. If there are none, then r is constant and we are done. If some live
state is missing from r, then r will be accepted by an automaton with fewer live states,
namely A with q missing. Similarly, if there is a vertex w such that r(w) = q is live
but some live state q′ does not appear beyond w in r, then there are partial runs r1, r2
defined by “running till state q is reached” on the modification of A in which q is made
non-live (by only allowing (q, (q, . . . , q)) as transitions out of q), respectively “starting
at state q and never reaching q′” on the automaton in which q is made initial and q′

is removed from A ; by induction these partial runs can be assumed to be regular, and
they can be stitched back into a regular run for A .

The main case is that in which all live states appear in r beyond any vertex. We
choose a path ξ0 in W such that all live states appear in

Q∞ = {those states that appear infinitely often on ξ}.
Since r is successful, there is an acceptance constraint, say (N1, P1), such that Q∞∩N1 =
∅ 6= Q∞ ∩ P1. Choose q ∈ Q∞ ∩ P1, and again find two regular partial runs r1, r2, with
r1 as above and r2 defined by “starting at state q and making a copy of q non-live for
further visits”. Again r1 and ω copies of r2 can be stitched together at all occurrences
of state q. To check that the resulting run is successful, the interesting case is on paths
ξ on which q appears infinitely often. For such paths, (N1, P1) is a valid acceptance
constraint: firstly q ∈ P1 so P1 intersects non-trivially the recurrent states. If some
q′ ∈ N1 occurred infinitely often on ξ, then q′ would be non-live and therefore the only
state on ξ, contradicting that q is live and occurs infinitely often. �

5. Fooling snakes

Below, we consider groups generated by a fixed finite set S. Recall the S-marked
groups from Section 3.2.

Definition 5.1 (Reach). Let G be an S-marked group, let A,B two subsets of G, and
let Θ be a tileset. We say that snakes can reach B from A if there is a finite Θ-snake
with left endpoint in A and right endpoint in B. If π : G→ K is an epimorphism, then
for a, b ∈ K we say that snakes can (G,K)-reach b from a if it they can reach π−1(b)
from π−1(a). Again this makes sense for all types of snakes, though we only need it for
strong directed snakes. △

The next two propositions are the fundamental properties of snakes that we shall use
to prove Theorem 2.6.

Proposition 5.2. Let G→ H → K be epimorphisms of S-marked groups, suppose that
Θ = (S′, C,D) is a directed tileset for some finite S′ ⊂ FS , and consider a, b ∈ K. If a
strong directed Θ-snake can (H,K)-reach b from a, then a strong directed Θ-snake can
(G,K)-reach b from a.

Proof. Consider a Θ-snake in H reaching a preimage of b from a preimage of a. Lift this
snake from H to G by following the directions in the tiles. The injective path is lifted
to an injective path, and there are fewer adjacencies to be checked for validity. The
endpoints still map to the same places in K, since H is an intermediate quotient. �
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Definition 5.3 (Periodic snake). Let ω : Z→ G be a snake. It is p-periodic, for p ≥ 1,
if there is an element g ∈ G, perforce of infinite order, such that ω(i+ p) = ω(i)g for all
i ∈ Z. We call ω periodic if it is p-periodic for some p ≥ 1.

Similarly, if Θ is a tileset, then a periodic Θ-snake is a snake obeying the tiling
constraints Θ, which is periodic in the above sense, and whose tiles are also periodic. △
Proposition 5.4. Let G be a virtually free group, and suppose Θ = (S′, C,D) is a
directed tileset for some finite S′ ⊂ FS. If G admits an infinite strong directed Θ-snake,
then it admits a periodic strong directed infinite snake.

Furthermore, if Z is a quotient of G, and strong directed (G,Z)-snakes can reach m
from 0 for |m| arbitrarily large, then there is a periodic snake with infinite projection to
Z.

Proof. We begin with G, and exploit the assumption that it is virtually free. Firstly,
there exists a regular normal form W ⊂ S∗ representing it, namely mapping bijectively
and quasi-isometrically to G via evaluation; and this regular language W may effectively
be computed from the coding of G. Furthermore, W may be assumed to be prefix-closed,
and representing a geodesic tree in G’s Cayley graph. Indeed, consider a finite-index
free subgroup FX ≤ G, and a transversal T so that G = FX · T ; we may then choose
W = {x1 · · ·xnt : xi ∈ X ∪X−1, xi 6= x−1

i+1, t ∈ T }.
The directed snake language is the tree languageS on W with alphabet Σ = S∪{·}, in

which vertex label s ∈ S represents an arrow pointing in direction s and · represents no
arrow, and the Cayley graph of G, when decorated by these arrows, contains an infinite
ray starting at 1 and no other arrow.

Lemma 5.5. The language S is regular.

Proof. This directly follows from directed snakes being expressible in monadic second-
order logic, see [1, Theorem 5]. �

Note however that S is not a closed language, in the topological sense.
We next consider the tiling constraints Θ. They only require a finite amount of extra

information at every vertex to check that they are enforced in its neighbourhood (this is
where we require W to be quasi-isometric to G); so the tree language SΘ of Θ-directed
snakes is also regular.

We are now ready to prove the proposition; this is in disguise a pumping argument
applied to SΘ,∆, based on a Rabin’s fundamental result. By Theorem 4.3, if there is
an infinite snake then SΘ is non-empty so there exists a regular tree x : W → Σ. In
particular, there are a 6= b ∈ W such x(a) = x(b) is an arrow, namely is part of the
snake, b is in the subtree at a, and the automaton is in the same state at a and at b.
Write g = a−1b. By symmetry, we may assume that a is visited before b along the snake.
The labeling x is defined by a deterministic finite state automaton with output, so the
snake’s movement is deterministic. Therefero, as we trace the path from a to b = ag
along the snake, the same path is traced from b to bg, etc.; so x defines an ultimately
periodic snake, and repeating infinitely many times the segment of x between a and b,
translated by powers of g, gives the desired periodic snake.

Now consider the boldface statement in the proof of Theorem 4.3. If there is a snake
with unbounded projection to Z, then there is a run r of SΘ with the property that it
has live states at arbitrarily large Z-positions; indeed if r(w) is non-live then the whole
subtree below W is constant, and in particular cannot accommodate a snake. Therefore
the path ξ0 may be chosen in such a manner that its projection to Z is unbounded,
and since copies of r2 are stitched along π0 the resulting regular tree will also carry
a snake with infinite Z-projection. All that is needed is that the segment of ξ0 that
repeats be chosen long enough that not only it contains all live states, but also it have
two occurrences of q that have distinct projections to Z. �
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Proof avoiding Rabin’s Theorem 4.3. There is some magic involved in our use of Rabin’s
theorem; in particular, the proof proceeds by removing non-live states, which has the
effect of passing from the quasi-tree G to an actual tree such as the free group FX

contained in it. It may be worthwhile to make explicit the argument, and avoid invoking
such a (useful but dangerous) hammer.

We begin as in the proof above with the tree language SΘ of infinite snakes on a
normal form for G.

For simplicity, we may convert SΘ to a tree language over the finite-index free sub-
group FX of G, since the Cayley graph of FX is already a tree. For this, we keep track
at each vertex w ∈ FX of what the snake does at each of the element of wT , where T is
the chosen transversal of FX in G. We may also assume that snakes move one X-step
at a time, by interpolating them appropriately.

Let us fix a tree in SΘ. There is a unique boundary point in FX to which the snake
eventually goes, since it visits every node finitely many times. Let ξ be the geodesic in
TX going towards this boundary point. On ξ, by pigeonholing we may find two vertices
a < b around which everything “looks the same” locally, namely the number, order and
directions of incoming and outgoing snakes are the same.

We may then copy the tree labeling between a and b infinitely, by forcing the tree
issued from b to take the labeling of the tree issued from a. It is then clear that the snake
moves infinitely far in this eventually periodic branch: a snake starts at the origin, and
since locally we never end a snake (and copying trees does not break the rules in Θ), that
snake is going to be infinite. It has to go in the infinite branch, because the “support”
of the configuration is at a bounded distance from that branch. This is because in
the original configuration, the snake eventually stays in the b-branch, so it visits only
finitely many nodes outside the b branch, and that finite part just gets copied around
the periodic geodesic we constructed.

Now, let us analyze the movement and show that the snake moves along an even-
tually periodic sequence of moves along the geodesic. Consider the sequence of nodes
a1 = a, a2 = b, a3 = the b-node inside the tree copied from a to b, etc. These are on a
geodesic in the tree, and we know the snake visits all of them (but not necessarily the
same way it visits a and b, of course). Now, in each of them we have the same slots. In
some of these slots, the snake enters from “home” and exits “away”, and in some it enters
from “away” and exits “home” (it might move also within slots internally, but these can
be considered as “no-move”). Here “home” is the direction of the origin, and “away”
goes towards the ends of FX . There must be an odd number of slots that get used, with
the first one being entered from “home” and exited “away”. The part between a and b in
the original tree determines how the “away”-outgoing slots of ai connect to the “home”-
incoming slots of ai+1, and how the “home”-outgoing slots connect to “away”-incoming
slots of ai.

Now, we may look at the movement of the original snake. In each ai, there is some
order in which it uses the “home”-incoming slots and the “away”-incoming slots. We can
find ai and ai+k such that this sequence is exactly the same. Then an obvious induction
shows that it remains the same between ai and ai+nk of all n ∈ N, since the part between
ai+(n−1)k and ai+nk is the same as that between ai and ai+k. The number of slots that
have been used in ai+nk is at least as large as the number of slots that have been used
in ai+(n+1)k: no more slots may be used on these two, so the snake will never return to
their left; and after a bounded number of steps the same slots will be filled in ai+(n+1)k

and now the snake is confined even further to the right.
Suppose that there arem slots in total at each node. Consider the nodes ai, ai+k, . . . , ai+mk,

and the time when the snake first enters one of the slots of ai+mk (from “home” of course).
Count how many slots have been used in each. As we argued this is nondecreasing as
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we go home. Therefore, we have some ai+nk and ai+(n+1)k where these numbers are the
same. Now an easy induction shows that no more slots than that ever get used.

In this version of the proof, assume also that the snake has unbounded projection to
Z. Then the vertices a, b may be chosen above in such a manner that they have different
projection to Z, and then the snake will not only be quasi-geodesic, its projection to Z

will also be quasi-geodesic. �

Corollary 5.6. Given a tileset Θ and a virtually free group G ∈ F , by some effective
encoding, it is decidable which of the following holds:

(1) There is an infinite Θ-snake in G with unbounded projection to Z;
(2) There are infinite Θ-snakes in G, but they all have bounded projection to Z;
(3) There are no infinite Θ-snakes in G.

Proof. The existence of an infinite Θ-snake can be coded in monadic second-order logic,
by [1, Theorem 5], so it is decidable whether we are in the first two cases or the third.

Now if there are infinite Θ-snakes with bounded but arbitrarily large projection to Z,
then by the last part of Proposition 5.4 there is an infinite Θ-snakes with unbounded
projection to Z.

Therefore, there only remains the first case or the refined second case “there is a
bound R such that all infinite Θ-snakes have projection to Z of width at most R”.

The first case can be semi-decided, by Proposition 5.4, since periodic snakes can be
effectively enumerated.

The second case can also be semi-decided: for every R ∈ N, the statement “there
is an infinite Θ-snake whose projection to Z has range > R” is expressible in monadic
second-order logic. Indeed let LR ⊂ S∗ be the language of words whose evaluation and
projection to Z is not in [−R,R]. This language is regular, an automaton recognizing it
having states {−R, 1−R, . . . , R}∪{√}, initial state 0, accepting state

√
, and transitions

that keep track of the Z-projection, or accept if it falls out of the range [−R,R]. To test
the existence of an infinite Θ-snake whose projection to Z has width > R, we simply
overlay on the snake predicate the condition that the snake’s labels has a factor in
LR. �

We now state our main technical result. Consider the spaceMS of S-marked groups;
fix a generator t ∈ S, and an epimorphism π : FS ։ Z with π(t) = 1. Let F be the
subspace of virtually free groups G ∈ M through which π factors; so groups G ∈ F come
equipped with a homomorphism G ։ Z still written π. Elements of F can be coded in
an effective manner, for example by the coset table of finite-index free subgroup. We
identify F with its set of codings, and henceforth can speak of computable properties of
F .
Theorem 5.7. There exists a computable function Φ: F∗ → N such that the following
holds. Let G ∈M be a group which is a limit of a computable sequence of virtually free
groups Gn ∈ F , such that

(1) if I ⊂ Z is a finite interval and r ∈ N then, for large enough n, the B(Gn, r)-
connected components of π−1(I) are finite;

(2) Gn+1 agrees with Gn in the Φ((G1, . . . , Gn))-ball for each n.

Then G has decidable snake problem and infinite snake problem.

This statement is quite a mouthful, but intuitively it simply states that whenever we
have a computable construction of limits of virtually free groups with a fixed generating
set and satisfying the two technical properties, and we can at each step pick how large
a ball we preserve at the next step, then we can produce groups G with decidable snake
and infinite snake problems by always preserving a large enough ball, where Φ gives the
size bounds. Such a general construction was precisely described in the previous section
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(the HNN extensions Gn are all generated by S = A0 ∪ {t, t−1}, by Lemma 3.1; HNN
extensions always come equipped with a homomorphism onto Z; Assumption 1 is given
by Lemma 3.3 while Assumption 2 follows from Lemma 3.4.

One can think of it as follows: consider a game where Alice and Bob construct a
group as a limit of virtually free groups inM, all the while preserving a homomorphism
onto Z taking value 1 on t. Alice at each turn picks a number r, and Bob picks a proper
quotient so that the ball of radius r is preserved. Alice wins if at some point Bob is not
able to construct a virtually free proper quotient, or if the group obtained in the limit
actually has decidable snake problems, or if the first item fails and from some point on
Bob no longer keeps making the Z-fibers more coarsely disconnected (in the sense of that
item). The function f is a winning strategy for this game. Thus we obtain computable
examples of groups with decidable snake problems by following any computable strategy
for Bob such that a proper quotient is always picked.

We state Theorem 5.7 in this manner, with the expectation that slightly different
constructions of the groups Gn will lead to more interesting examples of non-virtually-
free groups with decidable tiling properties.

Proof. Instead of describing the function Φ, it is easier to explain how to play the game
against Bob, to construct a sequence (Gn)n, as this allows us to “remember” what we
have in mind for our choices, rather than have to deduce what we have done in the past
from a given sequence (G1, . . . , Gn). So at each step we have access to a sequence of
groups G1, . . . , Gn, and some finite mount of information (things we should keep track
of in future steps that might give lower bounds on future radii). We then choose how big
a ball Gn+1 should preserve (in addition to the items in the statement of the theorem).

First of all, we enumerate all directed tile sets (Sn, Cn, Dn) where Sn ⊂ FS is a finite
memory set, Cn ⊆ C′

n × Sn is a finite colour set, and Dn ⊆ Sn ×Cn × Sn. Initially, Bob
gives us some group G0 which is virtually free and has the two properties. Assume the
groups G0, . . . , Gn are fixed and let us explain how to pick the size of the ball to preserve
in the next step.

Let us consider the directed tile set Θn = (Sn, Cn, Dn) on the group Gn. Note that
we can easily solve the snake problem, infinite snake problem and ouroboros problem
on Gn, so when thinking about Gn+1, we can assume we know these solutions. We first
consider only the snake problem (the infinite snake problem will be similar but easier,
and we can pick the maximum of the radii required by both). We have to figure out a
suitable size of preserved balls so that the snake problem is decidable for G no matter
how the following groups Gm are picked. At stage n, we only explicitly think about the
tile set Θn, but we set up some future constraints for later stages (which will also just
be about preserving large enough balls), so we don’t have to come back to it.

Suppose first that the snake problem has negative solution for Θn in Gn. Then there
is a radius r that witnesses this, meaning that there is no snake from 1 to Gn \B(Gn, r)
for some r ∈ N. This choice of r, if also imposed at all future steps, guarantees that Θn

will also not snake tile the limit group G.
Suppose next that there is a snake for Θn in Gn. If it is an ouroboros, then there is

a radius r that witnesses it and again pick at least radius r from now on.
Suppose next that there is an infinite snake. Remember that for all m we have

epimorphisms Gm ։ G ։ Z. Suppose first that snakes can reach arbitrarily large
numbers in Z. By Proposition 5.4, there is an infinite directed strong snake ω with period
p which reaches such numbers. Now as long as ω({0, . . . , p}) and its Sn-neighbourhood
are mapped injectively in future quotients, the snake survives all the way to G, since no
power of t is ever killed.

Suppose next that snakes may only reach bounded values in Z. Then we will keep
track of this snake in the following steps, not yet knowing what the fate of its snake
problem is. By Assumption (1), the snake will not be able to move arbitrarily far, since
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eventually in Gm the set of elements that may be reached while remaining at bounded
distance in Z. (For this, note that by Proposition 5.2, the Z-distance we can move can
never increase when passing to quotients.) So at that stage, if there is an ouroboros, then
we start keeping it alive in the remaining construction, and if there isn’t an ouroboros,
then there is a bound on snake sizes and again it suffices to take a large enough radius
to witness the non-tileability of Θn in every Gm.

Finally, by Corollary 5.6 we know in which case of the above alternatives we are.
We move now to the infinite snake problem and show how the argument above should

be adapted. If there is an infinite snake reaching arbitrarily large values in Z, then again
then there is a periodic snake by the first part of Proposition 5.4, and we can simply
keep it alive.

If there is no infinite snake, or if all snakes have a bounded image in Z, then a large
enough radius guarantees that there will be no infinite snake in the limit G. �

Remark 5.8. The above construction cannot extend to the ouroboros problem: on the
free group F , it is easy to construct a directed tile set which does not admit an ouroboros,
but admits one on every quotient: on every edge of F ’s Cayley graph put an arrow
pointing towards 1, and accept as ouroboroi all directed paths.

Thus, one would have to understand which quotients introduce an ouroboros, and
this seems similar to the issues involved in trying to show that the groups constructed
here may have decidable domino problem.
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