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TOPOLOGICAL ENTROPY OF TURING COMPLETE

DYNAMICS

RENZO BRUERA, ROBERT CARDONA, EVA MIRANDA,
AND DANIEL PERALTA-SALAS

Abstract. We explore the relationship between Turing completeness and
topological entropy of dynamical systems. We first prove that a natural class of
Turing machines that we call “regular Turing machines” (which includes most
of the examples of universal Turing machines) has positive topological entropy.
We deduce that any Turing complete dynamics with a continuous encoding
that simulates a universal machine in this class is chaotic. This applies to our
previous constructions of Turing complete area-preserving diffeomorphisms of
the disk and 3D stationary Euler flows. The article concludes with an appendix
written by Ville Salo that introduces a method to construct universal Turing
machines that are not regular and have zero topological entropy.

1. Introduction

Turing machines are one of the most popular models of computation and can
be understood as dynamical systems on the space of bi-infinite sequences. In
two breakthrough works [25, 26], Cris Moore introduced the idea of simulating
a Turing machine using continuous dynamical systems in the context of classical
mechanics. His rough idea was to embed both the space of sequences and the
discrete dynamics of the Turing machine into the phase space of a vector field
and its continuous dynamics, respectively, using suitable encoding functions. The
well-known existence of Turing machines that are universal, i.e., that can simulate
any other Turing machine, led him to introduce the definition of a Turing complete
dynamical system.
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A striking corollary of his ideas was the discovery of a new type of complexity
in dynamics, stemming from the fact that certain decision problems, such as the
halting problem, cannot be decided by a universal Turing machine. This yields
the conclusion that any Turing complete dynamical system exhibits undecidable
behavior for the problem of determining whether the trajectories whose initial
data belong to a certain computable set will enter a certain computable open set
or not after some time. A priori this computational complexity is very different
from the standard way one measures complexity in dynamics, specifically the
positivity of the topological entropy, which leads to the usual chaotic behavior.

Since Moore’s foundational work, many authors have revisited the problem of
simulating Turing machines with dynamical systems in different contexts. This
includes low dimensional dynamics [19], polynomial vector fields [13], closed-form
analytic flows [20, 14], potential well dynamics [34] and fluid flows [7, 5, 6, 8]. As
explained in the previous paragraph, these constructions yield complex dynam-
ical systems with undecidable orbits, which are able to simulate any computer
algorithm. It is then natural to ask about the relationship between computa-
tional complexity and topological entropy, or more precisely: does every universal
Turing machine have positive topological entropy? Is every Turing complete dy-
namical system chaotic? The answer to this question is necessarily delicate, as
illustrated by the recent construction of a Turing complete vector field of class
C∞ on S

2 with zero topological entropy [6].
Our goal in this article is to explore conditions under which a universal Turing

machine and a Turing complete dynamics is also chaotic in the usual sense of
positive topological entropy. The first step is to analyze the entropy of (universal)
Turing machines directly understood as symbolic dynamical systems. The study
of Turing machines from this perspective has been developed by several authors,
see e.g. [21, 2, 18].

Under suitable conditions, we will be able to construct dynamical systems that
exhibit both undecidable paths and chaotic invariant sets of horseshoe type. Our
construction is based on the notion of regular Turing machine, which is presented
in Section 4. Our main theorem is that regularity is a computable criterion that
implies that the machine has positive topological entropy. Positivity of the entropy
of a Turing machine was characterized by Jeandel [16]. However, unlike our cri-
terion, this characterization is not computable because determining if a one-tape
Turing machine has positive topological entropy is undecidable in general [10].

Theorem 1. Any regular Turing machine has positive topological entropy.

We did not find any examples in the literature of universal Turing machines that
are not regular, although artificial examples can certainly be constructed (see Ap-
pendix A). There are also (reversible) universal Turing machines that are regular.
It is important to emphasize that in Section 5 we relate the topological entropy
of the symbolic system associated with a Turing machine with the topological
entropy of not necessarily symbolic dynamical systems that are Turing complete.
Other works that have analyzed the relationship between the topological entropy



TOPOLOGICAL ENTROPY OF TURING COMPLETE DYNAMICS 3

(and its computability) of symbolic systems and more general dynamical systems
are [11, 12].

Combining Theorem 1 with the construction of Turing complete diffeomor-
phisms of the disk presented in [7] and the continuity of the encodings used there,
we easily get the following corollary:

Corollary 1. The Turing complete smooth area-preserving diffeomorphism of the
disk ϕ : D → D constructed in [7], which exhibits a compact invariant set K
homeomorphic to the square Cantor set, has positive topological entropy whenever
the simulated universal Turing machine is regular.

The technique introduced in [7], which is based on the suspension of Turing
complete area-preserving diffeomorphisms of the disk, immediately yields the con-
struction of Reeb flows on S

3 with chaotic invariant sets that are Turing complete.
As argued in [7] there are many compatible Riemannian metrics g that make these
Reeb flows stationary solutions of the Euler equations on (S3, g). Incidentally,
these metrics cannot be optimal (or critical) because the Reeb flows have positive
topological entropy [24].

This article is organized as follows. In Section 2 we recall the usual interpre-
tation of Turing machines as dynamical systems on compact metric spaces and
prove some auxiliary results. In Section 3 we define the topological entropy of a
Turing machine and show how it is related to the usual definition of topological
entropy in dynamics. Finally, the main theorem is proved in Section 4 and its
corollary in Section 5. For the sake of completeness we include Appendix A writ-
ten by Ville Salo, where a universal Turing machine with zero topological entropy
is constructed; in particular, such a UTM is not regular.

2. Turing machines as dynamical systems

In this section we explain how to define a continuous dynamical system on
a compact metric space using a Turing machine. We also introduce a notion
of universal Turing machine that is particularly convenient to study dynamical
properties.

2.1. The global transition function. A Turing machine T = (Q, q0, qhalt,Σ, δ)
is defined by:

• A finite set Q of “states” including an initial state q0 and a halting state
qhalt.

• A finite set Σ which is the “alphabet” with cardinality at least two. It
has a special symbol, denoted by 0, that is called the blank symbol.

• A transition function δ : Q \ {qhalt} × Σ −→ Q× Σ× {−1, 0, 1}.

The evolution of a Turing machine is described by an algorithm. At any given
step, the configuration of the machine is determined by the current state q ∈ Q
and the current tape t = (tn)n∈Z ∈ ΣZ. The pair (q, t) is called a configuration of
the machine. Any real computational process occurs throughout configurations
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such that every symbol in the tape t is 0 except for finitely many symbols. A
configuration of this type will be called compactly supported.

The algorithm is initialized by setting the current configuration to be (q0, s),
where s = (sn)n∈Z ∈ ΣZ is the input tape. Then the algorithm runs as follows:

(1) Set the current state q as the initial state and the current tape t as the
input tape.

(2) If the current state is qhalt, then halt the algorithm and return t as output.
Otherwise, compute δ(q, t0) = (q′, t′0, ε), with ε ∈ {−1, 0, 1}.

(3) Replace q with q′, and change the symbol t0 by t′0, obtaining the tape
t̃ = ...t−1.t

′
0t1... (as usual, we write a point to denote that the symbol at

the right of that point is the symbol at position zero).
(4) Shift t̃ by ε obtaining a new tape t′, then return to step (2) with the

current configuration (q′, t′). Our convention is that ε = 1 (resp. ε = −1)
corresponds to the left shift (resp. the right shift).

Given a Turing machine T , its transition function can be decomposed as

δ = (δQ, δΣ, δε) : Q× Σ → Q× Σ× {−1, 0, 1} .

Here the maps δQ, δΣ and δε denote the composition of δ with the natural projec-
tions of Q× Σ × {−1, 0, 1} onto the corresponding factors. The Turing machine
can be understood as a dynamical system (RT ,XT ), where the phase space is

XT := Q× ΣZ

and the action

RT : XT → XT

is the global transition function, which is given by

RT (q, (. . . t−1.t0t1 . . . )) :=











(q′, (. . . t−1t
′
0.t1 . . . )) , if δε(q, t0) = 1 ,

(q′, (. . . t−2.t−1t
′
0 . . . )) , if δε(q, t0) = −1 ,

(q′, (. . . , t−1.t
′
0t1 . . . )) , if δε(q, t0) = 0 ,

(1)

for q 6= qhalt, with t′0 = δΣ(q, t0) and q′ = δQ(q, t0). For q = qhalt, several
extensions of the global transition function exist, the simplest and most natural
being

RT (qhalt, (. . . t−1.t0t1 . . . )) := (qhalt, (. . . t−1.t0t1 . . . )) . (2)

This is equivalent to extending the transition function on halting configurations as
δ(qhalt, t0) := (qhalt, t0, 0); all along this article we shall assume that the transition
function is extended this way. We will use the notation

Xc
T = {set of compactly supported configurations} ,

that is, the set of configurations of T with a tape that has only finitely many
non-blank symbols.
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2.2. Properties of XT and RT . Given a Turing machine T , for each x = (q, t) ∈
XT let us set xq := q and xi := ti. If we endow the finite sets Q and Σ with the
discrete topology, XT becomes a compact metric space endowed with the complete
metric

d
(

x, x′
)

:=

{

1, if xq 6= x′q ,

2−n, if xq = x′q and n = sup{k : xi = x′i ∀|i| < k} .
(3)

It is elementary to check the continuity of the global transition function for this
metric:

Lemma 1. The global transition function RT : XT → XT is continuous for the
metric d.

The metric d defines a topology in the compact space XT . Then, several nat-
ural sets and functions are open and continuous for this topology. Particularly
important are the halting domain and the halting time:

Definition 1 (Halting domain and halting time). Let T be a Turing machine
with corresponding global transition function RT acting on the phase space XT .
As usual, the halting domain of T is defined as the set

XH
T := {x ∈ {q0} × ΣZ : ∃N ∈ N such that TN (x)q = qhalt} . (4)

The number N ∈ N such that TN (x)q = qhalt is called the halting time of x.

The following important lemma shows that the halting domain XH
T is open in

XT and the halting time N is continuous (both properties with respect to the
natural topology on XT introduced before).

Lemma 2. The halting domain of a Turing machine T is open in XT , and the
halting time function N : XH

T → N is continuous.

Proof. To see that XH
T is open we simply notice that

XH
T =





⋃

n≥1

{x ∈ XT : Rn
T (x)q = qhalt}



 ∩
(

{q0} × ΣZ

)

.

Since the first term is the union of open sets, and the second term is also open,
the claim follows.

To see the continuity of N , we observe that for a fixed x ∈ XT , since n := N(x)
is finite, the machine can read (at most) the cells of the sequence x in positions
[−n, n]. Therefore, any other input coinciding with x in the range [−n, n] will halt
after the same number of steps. We then conclude that for each natural number
n, the set N−1(n) ⊆ XT contains an open ball of radius 2−n and center x, which
implies the continuity of N . �

It is also convenient to introduce the notion of output function of a Turing
machine, which assigns to the halting domain XH

T the set of elements in XT that
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are reached when halting. Next, we introduce the precise definition and the key
property that the output function is continuous.

Definition 2 (Output function). For each Turing machine T , we define the output
function ΨT : XH

T → XT as

ΨT (x) := R
N(x)
T (x) ∀x ∈ XH

T , (5)

where N(x) is the halting time function.

Lemma 3. The output function is continuous.

Proof. Fix z ∈ XH
T . Since the halting time N is continuous, then it is locally

constant, so there is a ball B(z) ⊂ XH
T around z where N(x) = N(z) for all

x ∈ B(z). Therefore, locally we can write ΨT (x) = Rn
T (x) for all x ∈ B(z), with

n := N(z). Since RT is continuous (cf. Lemma 1), it follows that ΨT is continuous
in B(z) for all z, so ΨT is a continuous function. �

2.3. Universal Turing machines. Finally, we introduce a definition of univer-
sal Turing machine (UTM) following Morita in [27] (which is based on [30]).
We remark that this definition is more general than the classical ones used by
Shannon [31] and Minsky [22] in their foundational works.

Let {Tn}
∞
n=1 be an enumeration of all Turing machines and define the space

X :=
⋃

n≥1

Xc
Tn

of all compactly supported configurations of Tn.

Definition 3 (Universal Turing machine). A Turing machine U is universal if
there exist computable functions c : N× X → Xc

U and d : Xc
U → X such that for

each n ∈ N,

x ∈ XH
Tn

∩Xc
Tn

⇐⇒ c(n, x) ∈ XH
U ∩Xc

U , (6)

and

ΨTn
(x) = (d ◦ΨU ◦ c(n, ·))(x) ∀x ∈ XH

Tn
∩Xc

Tn
. (7)

There is a technical detail that we have omitted, which is that we want to
consider each element in Xc

Tn
as a finite word so that the boundary of the support

of a configuration is explicitly given. We refer to the appendix for a detailed
discussion of the definition of universal Turing machine. Most if not all examples
of universal Turing machines satisfy this Definition 3; examples can be found in
[31, 22, 27]. A particularly well-known property of universal Turing machines is
that the halting problem for compactly supported inputs is undecidable for these
machines.
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3. Topological entropy of Turing machines

The topological entropy of Turing machines has been studied in [29] from a dy-
namical systems viewpoint, and its computability was analyzed by Jeandel in [16],
by working with the entropy as is done with the speed of the machine. In this
section, we recall Oprocha’s formula to compute the topological entropy of a Tur-
ing machine and introduce Moore’s generalized shifts as a model to describe the
dynamics of any Turing machine. As we will see, the topological entropy of the
generalized shift coincides with that of the Turing machine it simulates.

Let T be a Turing machine. As argued in Section 2, it can be described using
the global transition function RT , which is a continuous dynamical system on
the compact metric space (XT , d). In this setting, one can use the definition of
topological entropy given by Bowen and Dinaburg [4, 9], which is equivalent to
the original one by Adler, Konheim, and McAndrew [1].

In [29, Theorem 3.1] Oprocha obtained a remarkable formula showing that the
topological entropy of T can be computed as the following limit:

h(T ) := lim
n→∞

1

n
log |S(n,RT )| , (8)

where | · | denotes the cardinality of the finite set S(n,RT ), which is defined as

S(n,RT ) := {u ∈ (Q× Σ)n : ∃x ∈ XT s.t. ui = (Ri−1
T (x)q, R

i−1
T (x)0) } , (9)

where ui is defined for i = 1, ..., n and denotes the ith component of u. Here, Rj
T

denotes the j-th iterate of the map RT . Usually, the set S(n,RT ) is called the set
of n-words allowed for the Turing machine T .

In [26] Moore introduced a generalization of the shift map that he called a
generalized shift, which is a class of dynamical systems that allows one to describe
any Turing machine, and is different from the global transition function RT . Let
us introduce Moore’s idea and how it connects with the dynamics and topological
entropy of (RT ,XT ).

Definition 4 (Generalized shift). Let A be a finite set. For each s ∈ AZ and
J, J ′ ∈ Z, we denote by s[J,J ′] the finite string containing the elements of s in

positions J to J ′, and we denote by ⊕ the operation of string concatenation. A
generalized shift is a map ∆ : AZ → AZ that is given by

∆(s) = σF(s[−r,r])
(

. . . s(−∞,−r−1] ⊕G(s[−r,r])⊕ s[r+1,∞)

)

.

Here, r is a natural number, σ is the Bernoulli shift and F and G are maps

F : A2r+1 → Z ,

G : A2r+1 → A2r+1 .

As in Section 2.1, if we endow A with the discrete topology then AZ is a compact
metric space and the generalized shift ∆ is always continuous (independently of
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the choice of r, F , and G). We observe that the complete metric is defined as in
the second formula of Equation (3).

Remark 1. Without any loss of generality one may assume that A = {0, 1},
and thus AZ is homeomorphic to the square ternary Cantor set C2 ⊂ R

2 via the
homeomorphism given by

e(s) =

(

∞
∑

k=1

s−k

2

3k
,

∞
∑

k=1

sk−1
2

3k

)

. (10)

Accordingly, any generalized shift can be viewed as a dynamical system on the
square Cantor set.

The connection between Turing machines and generalized shifts was established
by Moore [26]. Let T be a Turing machine with set of states Q and set of symbols
Σ, and define A = Q ∪ Σ. With XT = Q×ΣZ, we also define the injective map

ϕ : XT → AZ (11)

(q, t) 7→ (. . . t−1.qt0 . . . ) . (12)

Then:

Theorem 2 (Moore). Given a Turing machine T , there exists a generalized shift
∆ on AZ such that its restriction to ϕ(XT ) satisfies

∆|ϕ(XT ) = ϕ ◦RT ◦ ϕ−1|ϕ(XT ). (13)

We claim that, in fact, the map ϕ : XT → AZ is more than injective, it is
a topological conjugation between the dynamical systems ∆ and RT . This will
allow us to relate both dynamics.

Lemma 4. The map ϕ is a homeomorphism onto its image.

Proof. Let us see that ϕ is continuous. Indeed, for any ε > 0 choose k such that
ε > 2−k. Let x, x′ ∈ XT be such that d(x, x′) < 2−k. This means that

xq = x′q and xi = x′i for all |i| < k .

Then, clearly
d
(

ϕ(x), ϕ(x′)
)

< 2−k < ε ,

thus implying continuity.
Similarly we may show that ϕ−1|ϕ(XT ) is continuous. Fix ε > 0, let k be such

that ε > 2−k and let y, y′ ∈ ϕ(XT ) ⊂ AZ such that d(y, y′) < 2−(k+1). That is,
yi = y′i for all |i| < k + 1. Note that since y and y′ are in ϕ(XT ), they are of the
form

y = y(−∞,−1] ⊕ y0 ⊕ y[1,∞)

with y0 ∈ Q and yi ∈ Σ for all i 6= 0. Then, clearly

d
(

ϕ−1(y), ϕ−1(y′)
)

< 2−k ,

and the lemma follows. �
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For the purposes of this article, the main consequence of the aforementioned
conjugation between Turing machines and generalized shifts is the following result,
which shows the connection between the topological entropy of both systems.
Since a generalized shift ∆ is a map on a compact metric space, its topological
entropy h(∆) can be computed using Bowen-Dinaburg’s definition, as before.

Proposition 1. Let T be a Turing machine and ∆ its associated generalized shift.
Then h(∆) ≥ h(T ). In particular, if T has positive topological entropy, then so
does its associated ∆.

Proof. Since ∆|ϕ(XT ) = ϕ ◦ RT ◦ ϕ−1|ϕ(XT ), cf. Theorem 2, it is clear that the

subset ϕ(XT ) ⊂ AZ is forward invariant under the iterations of the generalized
shift ∆. Moreover, this property and Lemma 4 also show that the maps RT and
∆ are topologically conjugate via the homeomorphism ϕ : XT → ϕ(XT ). The
invariance of the topological entropy under homeomorphisms and the fact that

h(∆) ≥ h(∆|ϕ(XT )) ,

see e.g. [17, Section 3.1.b], complete the proof of the proposition. �

4. A criterion for positive topological entropy

In this section we prove the main result of this work, which shows that a special
type of Turing machine (what we call a regular Turing machine) has positive
topological entropy. To this end, we exploit the fact that a dynamical system has
positive topological entropy if it exhibits an invariant subset where the entropy is
positive.

4.1. Positive entropy for strongly regular Turing machines. To illustrate
the method of proof, we first consider the class of strongly regular Turing ma-
chines:

Definition 5 (Strongly regular Turing machine). A Turing machine T is strongly
regular if for some ε ∈ {−1, 1} there exists a subset Q′ × Σ′ ⊂ (Q \ {qhalt}) × Σ,
with |Σ′| ≥ 2, such that δQ(Q

′ × Σ′) ⊆ Q′ and δε|Q′×Σ′ = ε.

Given a strongly regular Turing machine T with ε = 1 (the case ε = −1 is
analogous), we claim that the subset

YT := {x ∈ XT : xq ∈ Q′, xi ∈ Σ′ for all i ≥ 0} = Q′ × ΣN0 × Σ′N ⊂ XT

is forward invariant under the global transition function RT . Here N0 is the set
of natural numbers without {0}.

Lemma 5. YT is forward invariant under RT .

Proof. Indeed, let x = (q, (ti)) ∈ YT . We have

RT (x) = (q′, (. . . t−1t
′
0.t1 . . . )) = (q′, (. . . s−1.s0s1 . . . ))

with si := ti+1 ∈ Σ′ for all i ≥ 0 and q′ = δQ(q, t0) ∈ Q′ by hypothesis. Therefore,
RT (x) ∈ YT as claimed. �
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This lemma allows us to prove the following sufficient condition for positive
topological entropy.

Theorem 3. Let T be a strongly regular Turing machine. Then

h(T ) ≥ log |Σ′| > 0 .

Proof. As before, let us consider that T is strongly regular with ε = 1, the
other case being completely analogous. To estimate the topological entropy of
T we use Oprocha’s formula in Equation (8). We claim that for each n ≥ 1,
|S(n,RT )| ≥ |Σ′|n. To see this, fix n, let q0 ∈ Q′ and consider any finite sequence
{a′0, a

′
1, . . . , a

′
n−1} ⊂ Σ′. Choose any x ∈ XT such that xq = q0 and xi = a′i for

i = 0, . . . , n − 1. We define qi = Ri
T (x)q for i = 1, . . . , n − 1 and finally we set

u =
(

(q0, a′0), . . . , (q
n−1, a′n−1)

)

∈ (Q′×Σ′)n. Since δε|Q′×Σ′ = 1, from (1) we infer
that

(R0
T (x)q, R

0
T (x)0) = (q0, t0) = (q0, a′0) = u0 ,

(R1
T (x)q, R

1
T (x)0) = (q1, t1) = (q1, a′1) = u1 ,

...

(Rn−1
T (x)q, R

n−1
T (x)0) = (qn−1, tn−1) = (qn−1, a′n−1) = un−1 ,

so u ∈ S(n,RT ). Since this holds for all finite sequences of length n in Σ′, we
conclude that |S(n,RT )| ≥ |Σ′|n. Hence

h(T ) ≥ lim
n→∞

1

n
log |Σ′|n = log |Σ′| ,

as we wanted to prove. �

This theorem can be readily applied to show that some particular examples
of universal Turing machines exhibit positive topological entropy. For instance,
the machine T denoted as UTM(6, 4) in [28] has a transition function δ specified
by the following table. The horizontal axis contains the states and the vertical
axis contains the symbols. Here, L and R stand for δε = −1 and δε = 1 in our
notation.

U6,4 u1 u2 u3 u4 u5 u6
g u1bL u1gR u3bL u2bR u6bL u4bL
b u1gL u2gR u5bL u4gR u6gR u5gR
δ u2cR u2cR u5δL u4cR u5δR u1gR
c u1δL u5gR u3δL u5cR u3bL halt

Figure 1. Transition table of UTM(6, 4).
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It is clear that Q′×Σ′ := {u2}×{b, δ} satisfies the hypotheses in the definition
of a strongly regular Turing machine with ε = 1, and hence a straightforward
application of Theorem 3 yields h(T ) ≥ log 2 > 0, that is:

Corollary 2. The universal Turing machine UTM(6, 4) has positive topological
entropy.

The same argument works when considering, for example, the reversible uni-
versal Turing machine URTM(10, 8) as introduced in [27, Section 7.3.2]:

Corollary 3. The universal Turing machine URTM(10, 8) has positive topolog-
ical entropy.

Other examples of universal Turing machines that are strongly regular are
UTM(5, 5), UTM(4, 6) and UTM(10, 3) in [30], or UTM(5, 5), UTM(9, 3) and
UTM(6, 4) in [28]. The weakly universal Turing machines WUTM(3, 3) and
WUTM(2, 4) in [35], or the famous Wolfram’s weakly universal (2, 3) Turing
machine are also strongly regular. We will later show that the universal Turing
machine UTM(15, 2) in [28] or the weakly universal Turing machine (6, 2) in [35]
are not strongly regular but are regular according to the definition in the following
subsection (so, in particular, they have positive topological entropy).

4.2. A generalized criterion for regular Turing machines. In this subsec-
tion we establish a more general version of Theorem 3 that is also computable
and implies that the Turing machine has positive topological entropy.

For this criterion we need to introduce some notation. As before, we denote
tapes in ΣZ using t and ti denotes the ith symbol of t. We will construct a
computable function

φ : Q× Σ −→ {H,P} ⊔ {±1} ×Q,

which tells us whether the machine, with current state q and reading the symbol
s at the zero position, will eventually (after perhaps some steps without shifting)
shift to the right, to the left, or not shift at all before halting (H) or becoming
periodic (P). More precisely, given a pair (q, s) ∈ Q × Σ, if δε((q, s)) = ±1 and
δQ((q, s)) 6= qhalt, then

φ(q, s) := (δε(q, s), δQ(q, s)) .

If δQ(q, s) = qhalt then
φ(q, s) := H .

Otherwise, setting δQ(q, s) = q1 and δΣ(q, s) = s1, if δQ(q1, s1) = qhalt, then we
define

φ(q, s) := H ,

and we iterate this process. It is easy to check that for any pair (q, s), only the
following possibilities can occur for the aforementioned iteration:

(1) After k steps of the machine without any shifting, we reach a configuration
(q̃, t̃) such that δQ(q̃, t̃0) = qhalt. In this case φ(q, s) := H.
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(2) The iterates of the global transition function applied to (q, t) never shift
nor reach a halting configuration. Then for some k we have Rk

T (q, t) =
(q, t) and the orbit becomes periodic. We define in this case φ(q, s) := P .

(3) After k steps without any shift the machine shifts to the left without
halting. That is, a configuration of the form (q+, t̃) with δ(q+, t̃0) =
(q′, s′, 1), q′ 6= qhalt, is reached. In this case, we define φ(q, s) := (1, q′).

(4) After k steps without shifting the machine shifts to the right without
halting. That is, a configuration of the form (q−, t̃) with δ(q−, t̃0) =
(q′, s′,−1) and q′ 6= qhalt is reached. In this case, we define φ(q, s) :=
(−1, q′).

Of course, the integer k depends on the pair (q, s). We can define the function
τ : Q× Σ → Z as the function giving such an integer k.

Definition 6 (Regular Turing machine). A Turing machine T is regular if, for
some ε ∈ {−1, 1}, there exist two different sequences

(q1, s1), ..., (qm1 , sm1) and (q′1, s
′
1), ..., (q

′
m2
, s′m2

)

of pairs in Q\{qhalt} × Σ, with m1 ≥ 2, m2 ≥ 2, such that q1 = q′1, φ(qi, si) =
(ε, qi+1), φ(q

′
j , s

′
j) = (ε, q′j+1) for all 1 ≤ i ≤ m1 − 1, 1 ≤ j ≤ m2 − 1, and

φ(qm1 , sm1) = φ(q′m2
, s′m2

) = (ε, q1). We also require that none of the sequences
is a concatenation of copies of the other sequence.

Graph interpretation. The regularity of a Turing machine can be easily un-
derstood in terms of two graphs that we can associate to T using the function φ.
These graphs are different, although somewhat related, from the classical state
diagram of the transition function of a Turing machine, see e.g. [33, Section 3.1].
For each ε ∈ {−1, 1} we can associate to T a graph as follows: the vertices of
the graph are the set of states of the machine. Given two vertices q and q′, we
define an edge oriented from q to q′ for each s ∈ Σ such that φ(q, s) = (ε, q′). It
is then obvious from the definition, that a Turing machine is regular if and only
if for some ε the corresponding graph contains two different oriented cycles with
at least one common vertex.

The following examples show that there are universal Turing machines that
are regular, but not strongly regular. The first example also illustrates the graph
interpretation of a regular Turing machine.

Example 1. An example of a (weakly) universal Turing machine that is regular
but not strongly regular is given by the (6, 2) machine in [35].

WU6,2 u1 u2 u3 u4 u5 u6
g u10L u60L u20R u51R u41L u11L
b u21L u30L u31L u60R u41R u40R

Figure 2. Transition table of WUTM(6, 2).
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It is easy to check that it is not strongly regular. On the other hand, the
sequences (4, g), (5, b), (4, g) and (4, b), (6, g), (4, b) satisfy the required properties
for the machine to be regular. Figure 3 pictures the graph (as defined before) of
the machine for ε = 1. Notice how u4 belongs to two different cycles.

u1

u2 u3

u4

u5u6

Figure 3. Graph of WU6,2 for ε = +1.

Example 2. The universal Turing machine UTM(15, 2) in [28] is another ex-
ample of universal Turing machine that is not strongly regular, but it is regular.
Looking at the transition table [28, Table 16], one notices that the sequences
(u4, c), (u6, c), (u4, c) and (u4, c), (u6, b), (u4, c) satisfy the necessary conditions in
Definition 6.

As suggested by the name, any strongly regular Turing machine is regular. The
graph interpretation is crucial to prove this property.

Proposition 2. A strongly regular Turing machine is regular.

Proof. Let T be a strongly regular Turing machine with ε = 1 (the other case
is analogous), and let Q′ ⊂ Q\{qhalt} and Σ′ ⊂ Σ be the subsets such that
δε|Q′×Σ′ = 1 and δQ(Q

′ × Σ′) ⊆ Q′ with |Σ′| ≥ 2. Consider the associated graph
defined above (with ε = 1) and the subgraph G given by the vertices Q′. It is
clear that each vertex of G is the origin of at least two edges, since any pair
(q, s) ∈ Q′ × Σ′ has δε(q, s) = 1 and |Σ′| ≥ 2. Starting with a vertex q1 ∈ Q′

of G, we can iteratively move along an edge (without ever repeating that edge),
following a sequence of vertices qi ∈ Q′ and stop whenever we reach a k such that
qk = qj for some j < k. This will necessarily happen, since after we have moved
|Q′|−1 times, we will repeat a vertex. This way we find a cycle C1, and we denote
its set of vertices by V1.

Consider the graph G1 obtained by removing from G the edges of C1, and take
a vertex q ∈ Q′ \V1. Again, iteratively move along the edges of the graph starting
at q. Notice that each vertex in V1 is the origin of some edge, hence after at most
|Q| − 1 steps we will find another cycle C2 with vertices V2. If V1 ∩V2 6= ∅, we are
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done. Otherwise V1 and V2 are disjoint, and we consider the graph G2 obtained
by removing from G1 the edges of the cycle C2. Repeating this process, if we
do not find two cycles sharing a vertex, we end up with disjoint cycles C1, ..., CN

containing every vertex of G. If we remove all the edges of the cycles C1, ..., CN

from G, we obtain a graph G′ such that every vertex is the origin of at least one
edge. We can apply the argument once more to G′, finding another cycle C0,
which necessarily intersects one of the C1, ..., CN , which completes the proof of
the proposition. �

Finally, we are ready to prove the main theorem of this article.

Theorem 4. A regular Turing machine has positive topological entropy.

Proof. Let T be a regular Turing machine, and let us assume that ε = 1, the other
case being analogous. Define the integers

a1 := 1 +

m1
∑

i=1

τ(qi, si), a2 := 1 +

m2
∑

i=1

τ(q′i, s
′
i),

and assume without any loss of generality that a := a1 ≥ a2. Obviously, a1 > m1

and a2 > m2, so a > max{m1,m2}. Consider integers of the form n = ra with
r ∈ N0. We claim that

|S(n,RT )| ≥ 2r. (14)

It is then easy to check that the topological entropy of T is positive. Indeed, using
Oprocha’s formula we have:

h(T ) = lim
n→∞

1

n
log |S(n,RT )|

= lim
r→∞

1

n
log |S(n,RT )|

≥ lim
r→∞

1

ra
r log 2

=
log 2

a
> 0 .

To see that the estimate (14) holds, we need to define some sequences of pairs
in Q × Σ. For each (qi, si), we define (qi,1, si,1) =

(

δQ(qi, si), δΣ(qi, si)
)

and then
iteratively

(qi,j, si,j) =
(

δQ(qi,j−1, si,j−1

)

, δΣ(qi,j−1, si,j−1)), for j ∈ {2, ..., τ(qi, si)− 1}.

We define analogously (q′i,j, s
′
i,j). Consider the sequences

u1 =
(

(

q1, s1
)

,
(

q1,1, s1,1
)

,
(

q1,2, s1,2
)

, ...,
(

q1,τ(q1,s1)−1, s1,τ(q1,s1)
)

,
(

q2, s2
)

,

(

q2,1, s2,1
)

, ...,
(

qm1−1,τ(qm1−1,sm1−1)

)

,
(

qm1 , sm1

)

)

,
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u2 =
(

(

q′1, s
′
1

)

,
(

q′1,1, s
′
1,1

)

,
(

q′1,2, s
′
1,2

)

, ...,
(

q′1,τ(q1,s1)−1, s
′
1,τ(q1,s1)

)

,
(

q′2, s
′
2

)

,

(

q′2,1, s
′
2,1

)

, ...,
(

q′m1−1,τ(qm1−1,sm1−1)
, s′m1−1,τ(qm1−1,sm1−1)

)

,
(

q′m1
, s′m1

)

)

.

and any sequence of the form

u = v1 ⊕ v2 ⊕ ...⊕ vr,

where vi is equal to either u1 or u2. This sequence has size at most ra, and there
are 2r possible choices which are all different thanks to the property that the
two sequences of pairs (qi, si) and (q′i, s

′
i) in Q× Σ satisfy that each one is not a

concatenation of copies of the other one. For each possible u, consider the initial
tape

tu = ...00.t1t2...tra00...

constructed as follows. If v1 = u1, then the first m1 symbols of the tape are
s1, ..., sm1 . If v1 = u2, then instead the firstm2 symbols of the tape are s′1, ..., s

′
m2

.
The next group of symbols is determined by v2, if v2 = u1 then the next symbols
are s1, ..., sm1 , and if v2 = u2 then the next symbols are s′1, ..., s

′
m2

. We do this
up to vr, and this determines at most ra symbols. We can fill the rest of symbols
up to tra with zeroes, for instance. By construction, initializing the machine with
the configuration x = (q1, tu), it is easy to check that (Ri

T (x)q, R
i
T (x)0) follows

sequentially the pairs in u, and after that it possibly runs through some other
pairs in Q × Σ. This shows that for each u there is (at least) a distinct element
in S(n,RT ), which proves that the bound (14) holds, as we wanted to show. �

Notice that, using the graph interpretation of a regular Turing machine, the
proof of Theorem 4 yields that the number of paths from the vertex that belong
to two different cycles grows exponentially with respect to the length of the path.
Heuristically, this might be interpreted as a hint that the topological entropy is
positive, as rigorously established in Theorem 4

We believe that the hypothesis that implies positive topological entropy, in our
case the definition of regular Turing machine, can probably be relaxed a bit at
the cost of adding quite some more technical details and definitions. We have
not found any example in the literature of a universal Turing machine that is not
regular, although artificial examples can certainly be constructed, as explained in
Appendix A.

5. Topological entropy of Turing complete area-preserving
diffeomorphisms and Euler flows

In this section we use our main theorem to construct Turing complete dynamical
systems with positive topological entropy. We first recall the definition of a Turing
complete dynamics X on a topological space M :

Definition 7 (Turing complete dynamical system). A dynamical system X on
M is Turing complete if there is a universal Turing machine Tu such that for any
input tin of Tu, there is a computable point p ∈ M and a computable open set
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U ⊂ M such that OrbX(p) ∩ U 6= ∅ if and only if the machine Tu halts with
input tin.

In several examples of Turing complete systems in the literature, however,
stronger properties are satisfied. For instance, for a diffeomorphism f : M → M
of a manifold, one might require that there is a compact invariant subset C ⊂M
such that f |C is conjugate or semiconjugate to the global transition function of
the Turing machine Tu. The following lemma follows from a combination of [7,
Lemma 4.5] and [7, Proposition 5.1]:

Lemma 6. Let T be a reversible Turing machine whose global transition func-
tion has been extended to halting configurations via the extension of the transition
function δ(qhalt, t) = (q0, t, 0) for all t ∈ Σ. Then there exists a bijective general-
ized shift ∆ that is conjugate to RT , and a smooth area-preserving diffeomorphism
ϕ : D −→ D of a disk D (of radius larger than one) that is the identity near the
boundary and whose restriction to the square Cantor set C2 ⊂ D is conjugate to
∆ by the homeomorphism e in Equation (10).

It was shown in [7, Corollary 3.2] that the diffeomorphism ϕ can be realized as
the first-return map on a disk-like transverse section of a stationary solution to the
Euler equations for some metric on any compact three-manifold M , which yields
a Turing complete stationary fluid flow [7, Theorem 6.1]. The main application of
Theorem 1 is that the Turing complete Euler flows constructed in [7] always have
positive topological entropy whenever the simulated universal Turing machine is
regular.

Corollary 4. If T is a regular reversible Turing machine then its associated
diffeomorphism of the disk ϕ and the steady Euler flows on a compact three-
manifold M constructed in [7] have positive topological entropy. If T is universal,
then ϕ exhibits a compact chaotic invariant set K homeomorphic to the square
Cantor set so that ϕ|K is Turing complete.

Proof. Given Theorem 4, the Turing machine T has positive topological entropy.
Its associated generalized shift ∆ has positive topological entropy too by Propo-
sition 1. The identification of the space of sequences of the generalized shift with
a square Cantor set C ⊂ [0, 1]2 via the homeomorphism (10) implies that ∆ in-

duces a map ∆̃ : C → C. By [7, Proposition 5.1] there exists an area-preserving
diffeomorphism ϕ : D → D of a disk D strictly containing the unit square whose
restriction to C, which is an invariant set, coincides with ∆̃. Hence, the topo-
logical entropy of ϕ is necessarily positive. The compact chaotic invariant set is
K ≡ C, and ϕ|K is Turing complete whenever T is universal. The stationary
Euler flow in [7, Theorem 6.1] admits a transverse disk where the first-return map
is conjugate to ϕ, and therefore it has positive topological entropy too. �
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Appendix A. A universal Turing machine with zero topological
entropy (by Ville Salo, University of Turku, Finland)

The goal of this appendix is to construct a universal Turing machine with
zero topological entropy. In particular, this machine is not regular in the sense of
Definition 6. The construction is based directly on the universal counter machines
of Minsky [23]. After this construction, we explain how to obtain another proof
(of a stronger result) from a more involved construction of Hooper [15] (or Kari
and Ollinger [20]).

We start by recalling Rogozhin’s definition [30] of a universal Turing machine;
compare with Definition 3 in the main text. First, for a Turing machine M , let
BM be the (computable) set of its finite-support configurations. An important
technical point is that for partial computable functions (recall that a partial com-
putable function is just any function that a computer, e.g. a Turing machine,
can compute) operating on such configurations, we want BM to be represented
so that the boundaries of the support are explicitly visible (although they are
not explicitly visible to the Turing machine M); a natural way is to code BM as
instantaneous descriptions, i.e., as finite words. Let B be a disjoint union of all
the sets BM . If a, b ∈ BM , write a ⇒M b for individual computation steps of
M , and write ⇒∗

M for the transitive closure. Define a partial function by letting

http://arxiv.org/abs/2311.15833
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ΦM (a) = b if a⇒∗
M b and b is a halting computation, and leave ΦM (a) undefined

if M never halts when started from a.
It is well-known that there exists a universal partial computable function φ :

N×N → N, in the sense that φ(n, x) = ψn(x) for all n, x ∈ N, where ψn is the nth
partial computable function of type ψn : N → N (under some Gödel numbering).

Definition 8. The Turing machine U is universal if there exist total computable
functions e : N × N → BM and d : BM → N such that d(ΦU (e(n, x))) = φ(n, x)
for all n, x.

The equality of two partial functions here means they are defined on precisely
the same inputs. The function e is the encoding function which is given the
Gödel number of a partial computable function, and an input, and it encodes
it as a Turing machine tape. The decoding function d then decodes the halting
configuration into a number.

Remark 2. This definition has the drawback that since universal Turing machines
simulate arbitrary computation on natural numbers, it is difficult to sensibly dis-
cuss complexity-theoretic (let alone algorithmic) issues, such as how much of the
computation is actually performed by d, e. This definition only requires that it
is U that passes the “halting problem barrier”. There exist universal Turing ma-
chines U which can simulate an arbitrary Turing machine M in such a way that
d, e just output a substitutive encoding of a configurations of M (with the transi-
tion table of M output at regular intervals), and U simulates M with only linear
slow-down. This implies positive entropy. However, it seems likely that there are
interesting encoding schemes that are “more efficient” than ours, yet allow for
zero entropy universality.

Theorem 5. There exists a universal Turing machine which has zero topological
entropy.

Proof. We recall the definition of a 2-counter machine. This is C = (Q, q0, qhalt, δ)
where δ : (Q \ {qhalt}) × {0,+}2 → Q × {−1, 0,+1}2 is the transition relation.
The machine defines a partial transition function on Q × N × N (defined if and
only if the state is not qhalt. The interpretation of (q,m, n) is that the machine is
in state q, and the current counter values are m,n.

The interpretation of δ(q, (a1, a2)) = (q′, b1, b2) is that if the current state is q
and ai = 0 iff the ith counter has zero value, then we step into state q′ and add
(b1, b2) to the counter values (we require that ai = 0 =⇒ bi 6= −1). Write t⇒C t′

if there is a one-step computation of C from t ∈ Q×N×N to t′ ∈ Q×N×N, and
as in the case of Turing machines define a partial function ΦC(t) = t′ if t ⇒∗

C t′

and t′ is halting (i.e. t′ = (qhalt,m, n) for some m,n).
It is a result of Minsky [23] that a 2-counter machine can simulate an arbitrary

Turing machine, in the sense that for any Turing machine M with states Q, we
can find a 2-counter machine with states Q′ ⊃ Q and the same halting state qhalt,
and total computable functions e : BM → Q × N and d : Q × N → BM such
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that if started from state (e(t), 0) with t ∈ BM , the next time we are in a state
(q′,m′, 0) ∈ Q×N×N (i.e. the next time the second counter contains 0, and the
state is in the subset Q of Q′), we have d(q′,m′) = t′ such that t⇒M t′).

Next, for any counter machine C with states Q and transitions δ, it is again
possible to construct a Turing machine M with alphabet {@, 0, 1} and states
Q′ = Q ⊔ Q′′ which simulates the counter machine in the following sense: If
started on the configuration

ω010m@0n10ω

with the head on the @-symbol in state q ∈ Q, then when in the sequence of
⇒M -steps we next enter a configuration of the form

ω010m
′

@0n
′

10ω

with the head on the @-symbol in some state q′ ∈ Q, we have (q,m, n) ⇒C

(q′,m′, n′). We call this the simulation property.
The way this is done is simply that the Turing machine performs a back and

forth sweep both ways to check which of the counters have zero value, and then
performs new sweeps in order to update them, according to the transition function
of C.

We describe a naive concrete implementation. One can use a state set of the
form Q ⊔ (Q × {0,+}2 ×X) ⊔ {⊥}, where Q simulated the states of the counter
machine, ⊥ is a fail state, and the elements of Q × {0,+}2 × X are interpreted
as follows: Q remembers the counter machine state, {0,+}2 is a finite amount of
memory for storing values of counters, and X is used to remember what we are
doing.

Specifically we can pick

X = {left check, left check return, right check, right check return, left update,

left drop, left update return, right update, right drop, right update return}.

Initially, when started in a state simulating a state of the counter machine,
our machine does not know what the counter values are, and should perform two
sweeps in order to calculate them. This can be done as follows:

δ′(q,@) = ((q, 0, 0, left check),@,−1)

δ′((q, a, 0, left check), 0) = ((q,+, 0, left check), 0,−1)

δ′((q, a, 0, left check), 1) = ((q, a, 0, left check return), 1, 1)

δ′((q, a, 0, left check return), 0) = ((q, a, 0, left check return), 0, 1)

δ′((q, a, 0, left check return),@) = ((q, a, 0, right check),@, 1)

δ′((q, a, b, right check), 0) = ((q, a,+, right check), 0, 1)

δ′((q, a, b, right check), 1) = ((q, a, b, right check return), 1,−1)

δ′((q, a, b, right check return), 0) = ((q, a, b, right check return), 0,−1)

δ′((q, a, b, right check return),@) = ((q, a, b, left update),@,−1)
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At this point, the state is expected to be (q, a, b, left update) where q is the simu-
lated counter machine state, and a, b ∈ {0,+} are the information about whether
the counters are zero or positive. Next, we should update the counters. Note that
decrementing the left counter means simply changing the 1 on the left to 0, and
rewriting it on the right (by using the drop state), and similarly for other counter
updates; and symmetrically for the right counter.

Specifically, assume the counter machine transitions as δ(q, a, b) = (q′, c, d).
Then the added transitions can be taken to be

δ′((q, a, b, left update), 0) = ((q, a, b, left update), 0,−1)

δ′((q, a, b, left update), 1) = ((q, a, b, left drop), 0,−c)

δ′((q, a, b, left drop), 0) = ((q, a, b, left update return), 1, 1)

δ′((q, a, b, left update return), 0) = ((q, a, b, left update return), 0, 1)

δ′((q, a, b, left update return),@) = ((q, a, b, right update),@, 1)

δ′((q, a, b, right update), 0) = ((q, a, b, right update), 0, 1)

δ′((q, a, b, right update), 1) = ((q, a, b, right drop), 0, d)

δ′((q, a, b, right drop), 0) = ((q, a, b, right update return), 1,−1)

δ′((q, a, b, right update return), 0) = ((q, a, b, right update return), 0,−1)

δ′((q, a, b, right update return),@) = (q′,@, 0)

It is clear that no matter what the other transitions are, this realizes the counter
machine simulation correctly: one can exactly calculate the sequence of moves
performed on the configuration ω010m@0n10ω, and no unexpected situations can
arise (note that by assumption, our counter machines never try to decrement a
counter with value zero).

Now we let all other transitions enter the state ⊥, and in this state, loop for
ever without moving. We claim that then the machine has zero entropy. For this,
we analyze a computation of the machine on an arbitrary configuration, for N
steps.

Observe that when we defined X above, we listed it in a particular order.
Our machine has the property that when it is in a state outside Q ∪ {⊥}, the
X-component of the state will evolve in this order, until the machine has either
entered ⊥ (and is in an infinite loop without moving), or is back to a state of Q,
necessarily on top of the symbol @. From a quick look at the transitions we see
that it moves to the next state of X whenever it sees any nonzero symbol on the
tape. Note that this implies that this initial segment of the computation can be
described by at most four numbers and some constant information, thus has a
description with logO(N4) = O(logN) bits.

Once we are in state Q, the computation in fact simulates the counter machine
exactly as above, or enters the state ⊥: The machine will look for the next 1 to
the left of @, then for the next 1 to the right, and then update their positions.
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If it never finds such 1, or runs into another @-symbol, it enters state ⊥; or if
it tries to move 1 further away from @, then that position must contain 0 or it
enters state ⊥.

Recall that positive entropy of a Turing machine implies positive entropy for
the traces S(N,U) ([29, 16]), and that positive entropy for a subshift (we apply
this to the subshift whose forbidden words are finite words that do not appear in
the words S(N,U)) implies that some infinite configuration has linear Kolmogorov
complexity in all prefixes [32, 16]. Thus if we had positive entropy for the Turing
machine, then some words in S(N,U) would require at least CN bits to describe
for all large enough N . Suppose this is the case, and we show a contradiction by
compressing them strictly more efficiently.

By the explanation above, any computation can be compressed by remembering
O(logN) bits; then the part where we simulate the counter machine; then another
O(logN) bit compressible suffix describing a computation that does not cycle
through all of X; and finally possibly we remember a number indicating how
much time we spend in state ⊥, again requiring at most O(logN) bits.

We now analyze the part where we simulate the counter machine, as it is
the only possible source of a linear amount of Kolmogorov complexity. Let
(q1,m1, n1), (q2,m2, n2), . . . be the sequence of simulated states and counter val-
ues encountered during this simulation part. Note that we must have N ≥
∑

i(mi + ni), as the machine certainly spends more than mi + ni steps to read
counter values mi and ni encoded in the distances of 1s from the @-symbol, and to
update them (recall that we always read these values whether or not the machine
actually “needs” to know their values).

We can compress the information about this sequence into B
∑

i log(mi + ni)
bits for some constant B, by simply writing down the numbers in binary (more
naturally we get log(mi)+ log(ni), but log(mi)+ log(ni) ≤ 2 log(mi+ni) and the
2 disappears into B). Let I be the set of i such that log(mi + ni) <

C
2B (mi + ni)

Note that this is true whenever mi + ni > D for some constant D. Let J be the
complement of I (among indices of the (qi,mi, ni)).

If we do not have a repetition among the (qi,mi, ni), then have the (rough)
upper bound

B
∑

i

log(mi + ni) ≤ C
∑

i∈I

(mi + ni)/2 +B
∑

i∈J

logD

≤ CN/2 +B|Q|D2 logD

where B, |Q|,D do not depend on N , so this is far smaller than CN for large
N , even together with the initial and final parts of the computation that took
O(logN) bits to compress.

On the other hand, computations with repeated (qi,mi, ni) are periodic, and
even easier to compress.

This contradiction proves that there cannot be a linear lower bound on the
compressibility, which finally concludes the proof of zero entropy. �
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In the beginning of this appendix, we mentioned that more is known. We briefly
outline this. A Turing machine admits a notion of speed, namely one calculates
the maximal offset by which the head can move in n steps, observes that this
quantity is subadditive and takes a normalized limit using Fekete’s lemma. It is
easy to show that zero speed implies zero entropy.

In 1969, Hooper proved in [15] (see [20] for a reversible version with an arguably
easier proof) that given a Turing machine, it is undecidable whether it admits
configurations where the machine never halts. If a Turing machine halts on every
configuration, then a simple compactness argument shows that there is a bound
on the number of steps it takes to halt. Thus, the undecidability must come from
computations that do not halt.

Thus, Hooper at least had to show that one can perform universal computation
with a Turing machine such that there are no situations where it is easy to prove
that the machine never halts (on infinite configurations). One such situation is
an infinite “search” for a symbol. In all direct simulations (and definitely in the
counter machine simulation we performed above), there are such infinite searches,
and due to compactness of the configuration space, it is tempting to think that
they are necessary. They are not, and the genius trick of Hooper was to show
that one can trick compactness by starting computations recursively, so that even
though there are infinite searches, there are other searches between them. This is
analogous to Berger’s proof in [3] of the undecidability of the domino problem.

It was later clarified by Jeandel that Hooper was in a sense literally fighting
positive speed: [16] shows that if a Turing machine has positive speed (resp.
positive entropy), then this can be proved in ZF, by showing that any such machine
satisfies a type of generalized version of the notion of regularity studied in the
present paper.

Thus, our conclusion is that at least infinitely many of Hooper’s machines must
have zero speed, thus zero entropy. Since they involve an undecidability problem,
one should expect them to involve universal computation, and indeed Hooper’s
machines have literally the simulation property we described above (except the
encoding is somewhat different, and there are many intermediate configurations
where multiple @-symbols appear, due to the recursive computations started at
all times).

Unfortunately, Hooper was not explicitly concerned with universal Turing ma-
chines, nor explicitly discusses speed or entropy, and thus we did not find it easy
to use his results as a black box to prove even the existence of a zero entropy
universal Turing machine. Nevertheless, there is no doubt that his construction
implies that zero speed universal Turing machines exist, and as we have tried to
argue here this is morally an automatic consequence of his result.

We state the stronger reversible statement: A reversible variant of Hooper’s
construction is given in [20]. This is also a direct simulation of a reversible counter
machine, and such a machine can simulate an arbitrary (not necessarily reversible)
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Turing machine up to a computable encoding. From the construction, one thus
obtains the following result:

Theorem 6. There exists a universal Turing machine which is reversible and has
zero speed. In particular, it has zero topological entropy.
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